Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, an automatic voltage regulator (AVR) embedded with fractional order PID (FOPID) is employed for the alternator terminal voltage control. A novel meta-heuristic technique, a modified version of grey wolf optimizer (mGWO) is proposed to design and optimize the FOPID AVR system. The parameters of FOPID, namely, proportional gain ( Κ Ρ), the integral gain ( Κ I), the derivative gain ( Κ D), λ and μ have been optimally tuned with the proposed mGWO technique using a novel fitness function. The initial values of the Κ Ρ, Κ I , and Κ D of the FOPID controller are obtained using Ziegler-Nichols (ZN) method, whereas the initial values of λ and μ have been chosen as arbitrary values. The proposed algorithm offers more benefits such as easy implementation, fast convergence characteristics, and excellent computational ability for the optimization of functions with more than three variables. Additionally, the hasty tuning of FOPID controller parameters gives a high-quality result, and the proposed controller also improves the robustness of the system during uncertainties in the parameters. The quality of the simulated result of the proposed controller has been validatedby other state-of-the-art techniques in the literature.
Go to article

Authors and Affiliations

Santosh Kumar Verma
1
Ramesh Devarapalli
2
ORCID: ORCID

  1. Department of EIE, Assam Energy Institute, Sivasagar (Centre of RGIPT, Jais), Assam–785697, India
  2. Department of EEE, Lendi Institute of Engineering and Technology, Vizianagaram-535005, India
Download PDF Download RIS Download Bibtex

Abstract

The growing number of distributed renewable energy sources and dynamic constant-power loads (e.g. electric vehicle charging stations) pose new challenges for network operators. These changes result in alterations to network load profiles and load flows, leading to greater voltage volatility. One effective solution to these problems can be the use of automatic voltage regulators (AVRs), which stabilize and symmetrize voltage output, whether at distribution transformers (DTs) or elsewhere in the distribution network. The device developed by the authors consists of two bidirectional power converters and three single-phase transformers connected in series to the low-voltage grid as a stabilizer. The proposed control system provides accurate and fast regulation of the AVR’s output voltage (within the range of ±10% of the nominal grid voltage), with each phase being independently adjusted, regardless of the type of power load. The article includes test results demonstrating selected functionalities of the developed AVR. The physical model of the device discussed in the article is a research component of the LINTE2 laboratory of the Gdansk University of Technology.
Go to article

Authors and Affiliations

Wojciech Śleszyński
Artur Cichowski
Krzysztof Jakub Szwarc
Robert Małkowski
Paweł Szczepankowski
Andrzej Augusiak
Dariusz Karkosiński
Ryszard Strzelecki

This page uses 'cookies'. Learn more