Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 140
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A system for precise angular laser beam deflection by using a plane mirror is presented. The mirror was fixed to two supports attached to its edges. This article details the theoretical basis of how this deflector works. The spring deflection of a flat circular metal plate under a uniform axial buckling was used and the mechanical stress was generated by a piezoelectric layer. The characteristics of the deformation of the plate versus the voltage control of the piezoelectrics were examined and the value of the change resolution possible to obtain was estimated. An experimental system is presented and an experiment performed to examine this system. As a result, a resolution of displacement of 10-8 rad and a range of 10-5 rad were obtained.

Go to article

Authors and Affiliations

Olga Iwasińska-Kowalska
Download PDF Download RIS Download Bibtex

Abstract

Laplace Transform is often used in solving the free vibration problems of structural beams. In existing research, there are two types of simplified models of continuous beam placement. The first is to regard the continuous beam as a single-span beam, the middle bearing of which is replaced by the bearing reaction force; the second is to divide the continuous beam into several simply supported beams, with the bending moment of the continuous beam at the middle bearing considered as the external force. Research shows that the second simplified model is incorrect, and the frequency equation derived from the first simplified model contains multiple expressions which might not be equivalent to each other. This paper specifies the application method of Laplace Transform in solving the free vibration problems of continuous beams, having great significance in the proper use of the transform method.

Go to article

Authors and Affiliations

H.B. Wen
T. Zeng
G.Z. Hu
Download PDF Download RIS Download Bibtex

Abstract

The vibration and stability analysis of uniform beams supported on two-parameter elastic foundation are performed. The second foundation parameter is a function of the total rotation of the beam. The effects of axial force, foundation stiffness parameters, transverse shear deformation and rotatory inertia are incorporated into the accurate vibration analysis. The work shows very important question of relationships between the parameters describing the beam vibration, the compressive force and the foundation parameters. For the free supported beam, the exact formulas for the natural vibration frequencies, the critical forces and the formula defining the relationship between the vibration frequency and the compressive forces are derived. For other conditions of the beam support conditional equations were received. These equations determine the dependence of the frequency of vibration of the compressive force for the assumed parameters of elastic foundation and the slenderness of the beam.

Go to article

Authors and Affiliations

P. Obara
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the beam tracing with refraction method, developed to examine the possibility of creating the beam tracing simulation of sound propagation in environments with piecewise non- homogenous media. The beam tracing with refraction method (BTR) is developed as an adaptive beam tracing method that simulates not only the reflection but also the refraction of sound. The scattering and the diffraction of sound are not simulated. The BTR employs 2D and 3D topology in order to efficiently simulate scenes containing non-convex media. After the beam tracing is done all beams are stored in a beam tree and kept in the computer memory. The level of sound intensity at the beginning of each beam is also memorized. This beam data structure enables fast recalculation of results for stationary source and geometry. The BTR was compared with two commercial ray tracing simulations, to check the speed of BTR algorithms. This comparison demonstrated that the BTR has a performance similar to state-of- the-art room-acoustics simulations. To check the ability to simulate refraction, the BTR was compared with a commercial Finite Elements Method (FEM) simulation. In this comparison the BTR simulated the focusing of the ultrasound with an acoustic lens, with good accuracy and excellent performance.

Go to article

Authors and Affiliations

Marjan Sikora
Ivo Mateljan
Nikola Bogunović
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a comprehensive study is carried out on the dynamic behaviour of Euler–Bernoulli and Timoshenko beams resting on Winkler type variable elastic foundation. The material properties of the beam and the stiffness of the foundation are considered to be varying along the length direction. The free vibration problem is formulated using Rayleigh-Ritz method and Hamilton’s principle is applied to generate the governing equations. The results are presented as non-dimensional natural frequencies for different material gradation models and different foundation stiffness variation models. Two distinct boundary conditions viz., clamped-clamped and simply supported-simply supported are considered in the analysis. The results are validated with existing literature and excellent agreement is observed between the results.

Go to article

Bibliography


[1] J. Neuringer and I. Elishakoff. Natural frequency of an inhomogeneous rod may be independent of nodal parameters. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 456(2003):2731–2740, 2000. doi: 10.1098/rspa.2000.0636.
[2] I. Elishakoff and S. Candan. Apparently first closed-form solution for vibrating: inhomogeneous beams. International Journal of Solids and Structures, 38(19):3411–3441, 2001. doi: 10.1016/S0020-7683(00)00266-3.
[3] Y. Huang and X.F. Li. A new approach for free vibration of axially functionally graded beams with non-uniform cross-section. Journal of Sound and Vibration, 329(11):2291–2303, 2010. doi: 10.1016/j.jsv.2009.12.029.
[4] M. Şimşek, T. Kocatürk, and Ş.D. Akbaş.. Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load. Composite Structures, 94(8):2358–2364, 2012. doi: 10.1016/j.compstruct.2012.03.020.
[5] B. Akgöz and Ö. Civalek. Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Composite Structures, 98:314-322, 2013. doi: 10.1016/j.compstruct.2012.11.020.
[6] K. Sarkar and R. Ganguli. Closed-form solutions for axially functionally graded Timoshenko beams having uniform cross-section and fixed–fixed boundary condition. Composites Part B: Engineering, 58:361–370, 2014. doi: 10.1016/j.compositesb.2013.10.077.
[7] M. Rezaiee-Pajand and S.M. Hozhabrossadati. Analytical and numerical method for free vibration of double-axially functionally graded beams. Composite Structures, 152:488–498, 2016. doi: 10.1016/j.compstruct.2016.05.003.
[8] M. Javid and M. Hemmatnezhad. Finite element formulation for the large-amplitude vibrations of FG beams. Archive of Mechanical Engineering, 61(3):469–482, 2014. doi: 10.2478/meceng-2014-0027.
[9] W.R. Chen, C.S. Chen and H. Chang. Thermal buckling of temperature-dependent functionally graded Timoshenko beams. Archive of Mechanical Engineering, 66(4): 393–415, 2019. doi: 10.24425/ame.2019.131354.
[10] W.Q. Chen, C.F. Lü, and Z.G. Bian. A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation. Applied Mathematical Modelling, 28(10):877–890, 2004. doi: 10.1016/j.apm.2004.04.001.
[11] J. Ying, C.F. Lü, and W.Q. Chen. Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. Composite Structures, 84(3):209–219, 2008. doi: 10.1016/j.compstruct.2007.07.004.
[12] T. Yan, S. Kitipornchai, J. Yang, and X.Q. He. Dynamic behaviour of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load. Composite Structures, 93(11):2992–3001, 2011. doi: 10.1016/j.compstruct.2011.05.003.
[13] A. Fallah and M.M. Aghdam. Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation. European Journal of Mechanics – A/Solids, 30(4):571–583, 2011. doi: 10.1016/j.euromechsol.2011.01.005.
[14] A. Fallah and M.M. Aghdam. Thermo-mechanical buckling and nonlinear free vibration analysis of functionally graded beams on nonlinear elastic foundation. Composites Part B: Engineering, 43(3):1523–1530, 2012. doi: 10.1016/j.compositesb.2011.08.041.
[15] H. Yaghoobi and M. Torabi. An analytical approach to large amplitude vibration and post-buckling of functionally graded beams rest on non-linear elastic foundation. Journal of Theoretical and Applied Mechanics, 51(1):39–52, 2013.
[16] A.S. Kanani, H. Niknam, A.R. Ohadi, and M.M. Aghdam. Effect of nonlinear elastic foundation on large amplitude free and forced vibration of functionally graded beam. Composite Structures, 115:60–68, 2014. doi: 10.1016/j.compstruct.2014.04.003.
[17] N. Wattanasakulpong and Q. Mao. Dynamic response of Timoshenko functionally graded beams with classical and non-classical boundary conditions using Chebyshev collocation method. Composite Structures, 119:346–354, 2015. doi: 10.1016/j.compstruct.2014.09.004.
[18] F.F. Calim. Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation. Composites Part B: Engineering, 103:98–112, 2016. doi: 10.1016/j.compositesb.2016.08.008.
[19] H. Deng, K. Chen, W. Cheng, and S. Zhao. Vibration and buckling analysis of double-functionally graded Timoshenko beam system on Winkler-Pasternak elastic foundation. Composite Structures, 160:152–168, 2017. doi: 10.1016/j.compstruct.2016.10.027.
[20] H. Lohar, A. Mitra, and S. Sahoo. Nonlinear response of axially functionally graded Timoshenko beams on elastic foundation under harmonic excitation. Curved and Layered Structures, 6(1):90–104, 2019. doi: 10.1515/cls-2019-0008.
[21] B. Karami and M. Janghorban. A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeams. Thin-Walled Structures, 143:106227, 2019. doi: 10.1016/j.tws.2019.106227.
[22] I. Esen. Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a variable velocity moving mass. International Journal of Mechanical Sciences, 153–154:21–35, 2019. doi: 10.1016/j.ijmecsci.2019.01.033.
[23] L.A. Chaabane, F. Bourada, M. Sekkal, S. Zerouati, F.Z. Zaoui, A. Tounsi, A. Derras, A.A. Bousahla, and A. Tounsi. Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation. Structural Engineering and Mechanics, 71(2):185–196, 2019. doi: 10.12989/sem.2019.71.2.185.
[24] M. Eisenberger and J. Clastornik. Vibrations and buckling of a beam on a variable Winkler elastic foundation. Journal of Sound and Vibration, 115(2):233–241, 1987. doi: 10.1016/0022-460X(87)90469-X.
[25] A. Kacar, H.T. Tan, and M.O. Kaya. Free vibration analysis of beams on variable Winkler elastic foundation by using the differential transform method. Mathematical and Computational Applications, 16(3):773–783, 2011. doi: 10.3390/mca16030773.
[26] A. Mirzabeigy and R. Madoliat. Large amplitude free vibration of axially loaded beams resting on variable elastic foundation. Alexandria Engineering Journal, 55(2):1107–1114, 2016. doi: 10.1016/j.aej.2016.03.021.
[27] H. Zhang, C.M. Wang, E. Ruocco, and N. Challamel. Hencky bar-chain model for buckling and vibration analyses of non-uniform beams on variable elastic foundation. Engineering Structures, 126:252–263, 2016. doi: 10.1016/j.engstruct.2016.07.062.
[28] M.H. Yas, S. Kamarian, and A. Pourasghar. Free vibration analysis of functionally graded beams resting on variable elastic foundations using a generalized power-law distribution and GDQ method. Annals of Solid and Structural Mechanics, 9(1-2):1–11, 2017. doi: 10.1007/s12356-017-0046-9.
[29] S.K. Jena, S. Chakraverty, and F. Tornabene. Vibration characteristics of nanobeam with exponentially varying flexural rigidity resting on linearly varying elastic foundation using differential quadrature method. Materials Research Express, 6(8):085051, 2019. doi: 10.1088/2053-1591/ab1f47.
[30] S. Kumar, A. Mitra, and H. Roy. Geometrically nonlinear free vibration analysis of axially functionally graded taper beams. Engineering Science and Technology, an International Journal, 18(4):579–593, 2015. doi: 10.1016/j.jestch.2015.04.003.
Go to article

Authors and Affiliations

Saurabh Kumar
1

  1. Department of Mechanical Engineering, School of Engineering, University of Petroleum andEnergy Studies (UPES), Dehradun, 248007, India.
Download PDF Download RIS Download Bibtex

Abstract

Assessment of the flexural buckling resistance of bisymmetrical I-section beam-columns using FEM is widely discussed in the paper with regard to their imperfect model. The concept of equivalent geometric imperfections is applied in compliance with the so-called Eurocode’s general method. Various imperfection profiles are considered. The global effect of imperfections on the real compression members behaviour is illustrated by the comparison of imperfect beam-columns resistance and the resistance of their perfect counterparts. Numerous FEM simulations with regard to the stability behaviour of laterally and torsionally restrained steel structural elements of hot-rolled wide flange HEB section subjected to both compression and bending about the major or minor principal axes were performed. Geometrically and materially nonlinear analyses, GMNA for perfect structural elements and GMNIA for imperfect ones, preceded by LBA for the initial curvature evaluation of imperfect member configuration prior to loading were carried out. Numerical modelling and simulations were conducted with use of ABAQUS/Standard program. FEM results are compared with those obtained using the Eurocode’s interaction criteria of Method 1 and 2. Concluding remarks with regard to a necessity of equivalent imperfection profiles inclusion in modelling of the in-plane resistance of compression members are presented.

Go to article

Authors and Affiliations

M.A. Giżejowski
R.B. Szczerba
M.D. Gajewski
Z. Stachura
Download PDF Download RIS Download Bibtex

Abstract

A method of calculating the deflections of steel plate-concrete composite beams is proposed. In the hybrid work of such beams the properties of reinforced concrete and composite structures are combined. This convention should be followed in considering their ultimate capacity and serviceability limit state. The proposed solution has been verified in experimental studies performed by the authors. Good compatibility of theoretical calculations and experimental results has been obtained. It allows the theoretical solution to be used in the analysis of other cases with parameters different than those of the discussed beams. In the experiments done by the author six beams of total length of 5.20 m and theoretical length of 5,00 m were used. The cross section was rectangular, 0.24 m in width and 0.49 m in height. The steel plate 4.74 m long was 6.10 and 16 mm thick. The diameter of the flexible connectors was 13 mm. Their spacing varied between 80 and 200 mm. Owing to the flexibility of the connectors the interface slip between the steel and concrete parts was included in the theoretical solutions. The results of an in-depth analysis indicate that the deflections of steel plate-concrete composite beams are affected by the compressive strength of concrete and the yield point of steel as well as connectors’ diameter and spacing. This impact varies, that of the yield point of the steel from which the plate is made being the highest.
Go to article

Authors and Affiliations

Dawid Kisała
1
Kazimierz Furtak
1
ORCID: ORCID

  1. Department of Bridge and Tunnel Building, Tadeusz Kościuszko Cracow University of Technology, Warszawska 24 St., 31-155 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper describes the dynamics of a composite cantilever beam with an active element. The vibrations of the kinematically excited beam are controlled with the use of a Macro Fiber Composite actuator. A proportional control algorithm is considered. During the analysis, actuator is powered by a time-varying voltage signal that is changed proportionally to the beam deflection. The MFC element control system with the implemented algorithm allowed for changing the stiffness of the tested structure. This is confirmed by the numerical and experimental results. Resonance curves for the beam with and without control are determined. The results show a very good agreement in qualitative terms.

Go to article

Bibliography

[1] R.B.Williams, G. Park, D.J. Inman, and W.K.Wilkie. An overview of composite actuators with piezoceramic fibers. In: Proceedings of 20th International Modal Analysis Conference, Los Angeles, CA, 4–7 February, 2002, SPIE – The International Society for Optical Engineering, 4753:421–427, 2002.
[2] B.W. Lacroix. On the mechanics, computational modeling and design implementation of piezoelectric actuators on micro air vehicles. Ph.D. Thesis, University of Florida, Gainesville, USA, 2013.
[3] T.A. Probst. Evaluating the Aerodynamic Performance of MFC-Actuated Morphing Wings to Control a Small UAV. Masters Thesis, Virginia Polytechnic Institute and State University, Blacksburg, USA, 2012.
[4] M. Borowiec, M. Bochenski, J. Gawryluk, and M. Augustyniak. Analysis of the macro fiber composite characteristics for energy harvesting efficiency. In: Awrejcewicz J., editor, Dynamical Systems: Theoretical and Experimental Analysis, vol. 182 of Springer Proceedings in Mathematics and Statistics Series, pages 27–37, 2016. doi: 10.1007/978-3-319-42408-8_3.
[5] J. Latalski. Modelling of macro fiber composite piezoelectric active elements in ABAQUS system. Eksploatacja i Niezawodność – Maintenance and Reliability, 52(4):72–78, 2011.
[6] A. Teter and J. Gawryluk. Experimental modal analysis of a rotor with active composite blades. Composite Structures, 153:451–467, 2016. doi: 10.1016/j.compstruct.2016.06.013.
[7] J. Gawryluk, A. Mitura, and A. Teter. Influence of the piezoelectric parameters on the dynamics of an active rotor. AIP Conference Proceedings, 1922(100010):1–8, 2018. doi: 10.1063/1.5019095.
[8] A. Mitura, J. Gawryluk, and A. Teter. Numerical and experimental studies on the rotating rotor with three active composite blades. Eksploatacja i Niezawodność – Maintenance and Reliability, 4(19):572–581, 2017. doi: 10.17531/ein.2017.4.11.
[9] J. Gawryluk, A. Mitura, and A. Teter. Dynamic response of a composite beam rotating at constant speed caused by harmonic excitation with MFC actuator. Composite Structures, 210:657–662, 2019. doi: 10.1016/j.compstruct.2018.11.083.
[10] M. Rafiee, F. Nitzsche, and M. Labrosse. Dynamics, vibration and control of rotating composite beams and blades: A critical review. Thin-Walled Structures, 119:795–819, 2017. doi: 10.1016/j.tws.2017.06.018.
[11] R. Alkhatib and M.F. Golnaraghi. Active structural vibration control: a review. The Shock and Vibration Digest, 35(5):367–383, 2003.
[12] P.P. Friedmann. On-blade control of rotor vibration, noise, and performance: just around the corner? Journal of the American Helicopter Society, 59(4):1–37, 2014. doi: 10.4050/JAHS.59.041001.
[13] J.X. Gao and W.H. Liao. Vibration analysis of simply supported beams with enhanced selfsensing active constrained layer damping treatments. Journal of Sound and Vibration, 280(1-2):329–357, 2005. doi: 10.1016/j.jsv.2003.12.019.
[14] J.C. Lin and M.H. Nien. Adaptive control of a composite cantilever beam with piezoelectric damping-modal actuators/sensors. Composite Structures, 70(2):170–176, 2005. doi: 10.1016/j.compstruct.2004.08.020.
[15] H.A. Sodano. Macro-Fiber Composites for Sensing, Actuation and Power Generation. Masters Thesis, Virginia Polytechnic Institute and State University, Blacksburg, USA, 2003.
Go to article

Authors and Affiliations

Jarosław Gawryluk
1
Andrzej Mitura
1
Andrzej Teter
1

  1. Department of Applied Mechanics, Mechanical Engineering Faculty, Lublin University of Technology, Lublin, Poland.
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the method of a numerical simulation concerning diagonal crack propagation in con-crete beams was presented. Two beams reinforced longitudinally but without shear reinforcement were considered during the Finite Element Method analysis. In particular, a nonlinear method was used to simulate the crack evaluation in the beams. The analysis was performed using the commercial program ANSYS. In the numerical simulation, the limit surface for concrete described by Willam and Warnke was applied to model the failure of concrete. To solve the FEM-system of equations, the Newton-Raphson method was used. As the results of FEM calculations, the trajectories of total stains and numerical images of smeared cracks were obtained for two analyzed beams: the slender beam S5 of leff = 1.8 m and the short beam S3k of leff = 1.1 m. The applied method allowed to generate both flexural vertical cracks and diagonal cracks in the shear regions. Some differences in the evaluation of crack patterns in the beams were observed. The greater number of flexural vertical cracks which penetrated deeper in the beam S5 caused the lower stiffness and the greater deformation in the beam S5 compared to the short beam S3k. Numerical results were compared with the experimental data from the early tests performed by Słowik [3]. The numerical simulation yielded very similar results as the experiments and it confirmed that the character of failure process altered according to the effective length of the member. The proposed numerical procedure was successfully verified and it can be suitable for numerical analyses of diagonal crack propagation in concrete beams.

Go to article

Authors and Affiliations

M. Słowik
P. Smarzewski
Download PDF Download RIS Download Bibtex

Abstract

This study focuses to develop a new hybrid Engineered Cementitious Composite (ECC) and assesses the performance of a new hybrid ECC based on the steel short random fiber reinforcement. This hybrid ECC aims to improve the tensile strength of cementitious material and enhance better flexural performance in an RC beam. In this study, four different mixes have been investigated. ECC with Poly Vinyl Alcohol (PVA) fiber and PolyPropylene (PP) fiber of 2.0% volume fraction are the two Mono fiber mixes; ECC mix with PVA fiber of 0.65% volume fraction hybridized with steel fiber of 1.35% volume fraction, PP fiber of 0.65% volume fraction hybridized with steel of 1.35% volume fraction are the two additional different hybrid mixes. The material properties of mono fiber ECC with 2.0 % of PVA is kept as the reference mix in this study. The hybridization with fibers has a notable achievement on the uniaxial tensile strength, compressive strength, Young’s modulus, and flexural behavior in ECC layered RC beams. From the results, it has been observed that the mix with PVA fiber of 0.65% volume fraction hybrid with steel fiber of 1.35% volume fraction exhibitimprovements in tensile strength, flexural strength, andenergy absorption. ThePP fiber of 0.65% volume fraction hybridized with steel of 1.35% volume fraction mix has reasonable flexural performance and notable achievement in displacement ductility overthe reference mix.

Go to article

Authors and Affiliations

A.R. Krishnaraja
Dr.S. Kandasamy
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a study of a possible application of structure embedded piezoelectric actuators to enhance the performance of a rotating composite beam exhibiting the coupled flexural-flexural vibrations. The discussed transversal and lateral bending modal coupling results from the directional properties of the beam's laminate and ply stacking distribution. The mathematical model of the beam is based on an assumption of cross-sectional non-deformability and it incorporates a number of non-classical effects. The final 1-D governing equations of an active composite beam include both orthotropic properties of the laminate and transversely isotropic properties of piezoelectric layers. The system's control capabilities resulting from embedded Macro Fiber Composite piezoelectric actuators are represented by the boundary bending moment. To enhance the dynamic properties of the composite specimen under consideration a combination of linear proportional control strategies has been used. Comparison studies have been performed, including the impact on modal coupling magnitude and cross-over frequency shift.
Go to article

Authors and Affiliations

Marcin Bocheński
Jarosław Latalski
Jerzy Warmiński
Download PDF Download RIS Download Bibtex

Abstract

In this work, transient and free vibration analyses are illustrated for a functionally graded Timoshenko beam (FGM) using finite element method. The governing equilibrium equations and boundary conditions (B-Cs) are derived according to the principle of Hamilton. The materials constituents of the FG beam that vary smoothly along the thickness of the beam (along beam thickness) are evaluated using the rule of mixture method. Power law index, slenderness ratio, modulus of elasticity ratio, and boundary conditions effect of the cantilever and simply supported beams on the dynamic response of the beam are studied. Moreover, the influence of mass distribution and continuous stiffness of the FGM beam are deeply investigated. Comparisons between the current free vibration results (fundamental frequency) and other available studies are performed to check the formulation of the current mathematical model. Good results have been obtained. A significant effect is noticed in the transient response of both simply supported and cantilever beams at the smaller values of the power index and the modulus elasticity ratio.

Go to article

Bibliography

[1] B.V. Sankar. An elasticity solution for functionally graded beams. Composites Science and Technology,61(5):689–96, 2001. doi: 10.1016/S0266-3538(01)00007-0.
[2] M. Şimşek. . Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method. International Journal of Engineering and Applied Sciences, 1(3):1–11, 2009.
[3] S.A. Sina, H.M. Navazi, and H. Haddadpour. An analytical method for free vibration analysis of functionally graded beams. Materials & Design, 30(3):741–747, 2009. doi: 10.1016/j.matdes.2008.05.015.
[4] A. Chakrabarty, S. Gopalakrishnan, and J.N. Reddy. A new beam finite element for the analysis of functionally graded materials. International Journal of Mechanical Sciences, 45(3):519–539, 2003. doi: 10.1016/S0020-7403(03)00058-4.
[5] M. Al-Shujairi and Ç. Mollamahmutoğlu. Dynamic stability of sandwich functionally graded micro-beam based on the nonlocal strain gradient theory with thermal effect. Composite Structures, 201:1018–1030, 2018. doi: 10.1016/j.compstruct.2018.06.035.
[6] H.T. Thai and T.P. Vo. Bending and free vibration of functionally graded beams using various higher-order shear deformation beam theories. International Journal of Mechanical Sciences, 62(1):57–66, 2012. doi: 10.1016/j.ijmecsci.2012.05.014.
[7] M. Al-Shujairi and Ç. Mollamahmutoğlu. Buckling and free vibration analysis of functionally graded sandwich micro-beams resting on elastic foundation by using nonlocal strain gradient theory in conjunction with higher order shear theories under thermal effect. Composites Part B: Engineering, 154:292–312, 2018. doi: 10.1016/j.compositesb.2018.08.103.
[8] M. Şimşek and M. Al Shujairi. Static, free and forced vibration of functionally graded (FG) sandwich beams excited by two successive moving harmonic loads. Composites Part B: Engineering,108:18–34, 2017. doi: 10.1016/j.compositesb.2016.09.098.
[9] M. Aydogdu and V. Taskin. Free vibration analysis of functionally graded beams with simply supported edges. Materials & Design, 28(5):1651–1656, 2007. doi: 10.1016/j.matdes.2006.02.007.
[10] M. Şimşek and T. Kocatürk. Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load. Composite Structures, 90(4):465–473, 2009. doi: 10.1016/j.compstruct.2009.04.024.
[11] K.K. Pradhan and S. Chakrabaty. Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method. Composites Part B: Engineering, 51:175–184, 2013. doi: 10.1016/j.compositesb.2013.02.027.
[12] Y. Yang, C.C. Lam, K.P. Kou, and V.P. Iu. Free vibration analysis of the functionally graded sandwich beams by a meshfree boundary-domain integral equation method. Composite Structures, 117:32–39, 2014. doi: 10.1016/j.compstruct.2014.06.016.
[13] L.L. Ke, J. Yang, S. Kitipornchai, and Y. Xiang. Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials. Mechanics of Advanced Materials and Structures, 16(6):488–502, 2009. doi: 10.1080/15376490902781175.
[14] M. Şimşek. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nuclear Engineering and Design, 240(4):697–705, 2010. doi: 10.1016/j.nucengdes.2009.12.013.
[15] M. Şimşek. Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions. Composite Structures, 133:968–78, 2015. doi: 10.1016/j.compstruct.2015.08.021.
[16] J. Yang, Y. Chen, Y. Xiang, and X.L. Jia. Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load. Journal of Sound and Vibration, 312(1–2):166–181, 2008. doi: 10.1016/j.jsv.2007.10.034.
[17] S. Kapuria, M. Bhattacharyya, and A.N. Kumar. Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation. Composite Structures, 82(3):390–402, 2008. doi: 10.1016/j.compstruct.2007.01.019.
[18] J. Yang and Y. Chen. Free vibration and buckling analyses of functionally graded beams with edge cracks. Composite Structures, 83(1):48–60, 2008. doi: 10.1016/j.compstruct.2007.03.006.
[19] A. Doroushi, M.R. Eslami, and A. Komeili. Vibration analysis and transient response of an FGPM beam under thermo-electro-mechanical loads using higher-order shear deformation theory. Journal of Intelligent Material Systems and Structures, 22(3):231–243, 2011. doi: 10.1177/1045389X11398162.
[20] M.J. Aubad, S.O.W. Khafaji, M.T. Hussein, and M.A. Al-Shujairi. Modal analysis and transient response of axially functionally graded (AFG) beam using finite element method. Materials Research Express, 6(10):1065g4, 2019. doi: 10.1088/2053-1591/ab4234.
[21] Z. Su, G. Jin, and T. Ye. Vibration analysis and transient response of a functionally graded piezoelectric curved beam with general boundary conditions. Smart Materials and Structures, 25(6):065003, 2016. doi: 10.1088/0964-1726/25/6/065003.
[22] A. Daga, N. Ganesan, and K. Shankar. Transient dynamic response of cantilever magneto-electro-elastic beam using finite elements. International Journal for Computational Methods in Engineering Science and Mechanics, 10(3):173–185, 2009. doi: 10.1080/15502280902797207.
[23] Z.N. Li, Y.X. Hao, W. Zhang, and J.H. Zhang. Nonlinear transient response of functionally graded material sandwich doubly curved shallow shell using new displacement field. Acta Mechanica Solida Sinica, 31(1):108–126, 2018. doi: 10.1007/s10338-018-0008-8.
[24] Y. Huang and Y. Huang. A real-time transient analysis of a functionally graded material plate using reduced-basis methods. Advances in Linear Algebra & Matrix Theory, 5(3):98–108, 2015. doi: 10.4236/alamt.2015.53010.
[25] T. Yokoyama. Vibrations and transient response of Timoshenko beams resting on elastic foundation. Ingenieur Archiv, 57:81–90, 1987. doi: 10.1007/BF00541382.
[26] A.E. Alshorbagy, M.A. Eltaher, and F.F. Mahmoud. Free vibration characteristics of a functionally graded beam by finite element method. Applied Mathematical Modelling, 35(1):412–425, 2011. doi: 10.1016/j.apm.2010.07.006.
[27] S. Taeprasartsit. Nonlinear free vibration of thin functionally graded beams using the finite element method. Journal of Vibration and Control, 21(1):29–46, 2015. doi: 10.1177/1077546313484506.
[28] N. Pradhan and S.K. Sarangi. Free vibration analysis of functionally graded beams by finite element method. IOP Conference Series: Materials Science and Engineering, 377:012211, 2018. doi: 10.1088/1757-899X/377/1/012211.
[29] N. Fouda, T. El-Midany, and A.M. Sadoun. Bending, buckling and vibration of a functionally graded porous beam using finite elements. Journal of Applied and Computational Mechanics, 3(4):274–282, 2017. doi: 10.22055/jacm.2017.21924.1121.
[30] L.L. Jing, P.J. Ming, W.P. Zhang, L.R. Fu, and Y.P. Cao. Static and free vibration analysis of functionally graded beams by combination Timoshenko theory and finite volume method. Composite Structures, 138:192–213, 2016. doi: 10.1016/j.compstruct.2015.11.027.
[31] V. Kahya and M. Turan. Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory. Composites Part B: Engineering, 109:108–115, 2017. doi: 10.1016/j.compositesb.2016.10.039.
[32] H. Su, J.R. Banerjee, and C.W. Cheung. Dynamic stiffness formulation and free vibration analysis of functionally graded beams. Composite Structures, 106:854–862, 2013. doi: 10.1016/j.compstruct.2013.06.029.
[33] Z. Friedman and J.B. Kosmatka. An improved two-node Timoshenko beam finite element. Computers & Structures, 47(3):473–481, 1993. doi: 10.1016/0045-7949(93)90243-7.
[34] Y.H. Lin. Vibration analysis of Timoshenko beams traversed by moving loads. Journal of Marine Science and Technology. 2(1):25–35, 1994.
Go to article

Authors and Affiliations

Salwan Obaid Waheed Khafaji
1
Mohammed A. Al-Shujairi
1
Mohammed Jawad Aubad
1

  1. Department of Mechanical Engineering, Faculty of Engineering, University of Babylon, BabylonProvince, Iraq.
Download PDF Download RIS Download Bibtex

Abstract

In the paper, the authors discuss the possibility to apply the "Nodalised Beam" method for vibroinsulation of manually operated tools. They indicate the difficulties in applying the original method for this purpose. On the bases of the reciprocity principle, the authors propose a method for modifying the system that allows them to avoid the mentioned disadvantages. Equations derived for the modified system that makes it possible to define the position of nodal points. The relations were verified at a test station. Furthermore, a method of tuning the system was proposed.
Go to article

Authors and Affiliations

Leszek Majkut
Jerzy Michalczyk
Download PDF Download RIS Download Bibtex

Abstract

In this paper an alternative procedure to vibro-acoustics study of beam-type structures is presented. With this procedure, it is possible to determine the resonant modes, the bending wave propagation velocity through the study of the radiated acoustic field and their temporal evolution in the frequency range selected. As regards the purely experimental aspect, it is worth noting that the exciter device is an actuator similar to is the one employed in distributed modes loudspeakers; the test signal used is a pseudo random sequence, in particular, an MLS (Maximum Length Sequence), facilitates post processing. The study case was applied to two beam-type structures made of a sandstone material called Bateig. The experimental results of the modal response and the bending propagation velocity are compared with well-established analytical solution: Euler-Bernoulli and Timoshenko models, and numerical models: Finite Element Method – FEM, showing a good agreement.
Go to article

Authors and Affiliations

Jeniffer Torres-Romero
William Cardenas
Jesus Carbajo
Segovia Eulogio Enrique G.
Ramis-Soriano Jaime
Download PDF Download RIS Download Bibtex

Abstract

By the method of modern physical material science (optic microscopy scanning and transmission electron microscopy) the analysis of structural phase states, the morphology of the second phase inclusions and defect substructure of Al-Si alloy (silumin) of hypoeutectic composition, subjected to electron beam processing was done with the following parameters: energy density 25-35 J/cm2, beam length 150 μs, pulse number – 3, pulse repetition rate – 0.3 Hz, pressure of residual gas (argon) 0.02 Pa. The surface irradiation results in the melting of the surface layer, the dissolution of boundary inclusions, the stricture formation of high speed cellular crystallization of submicron sizes, the repeated precipitation of the second phase nanodimentional particles. With the increased distance from the irradiation surface the layer containing the second phase inclusions of quasi-equilibrium shape along with the crystallization cells was revealed. It is indicative of the processes of Al-Si alloy structure globalization on electron beam processing.

Go to article

Authors and Affiliations

S. Konovalov
V. Gromov
D. Zaguliyaev
Y. Ivanov
A. Semin
J. Rubannikova
Download PDF Download RIS Download Bibtex

Abstract

This paper presents two methods for evaluation of the effective wavenumber of nearly-Gaussian beams in laser interferometers that can be used for determination of a so called diffraction correction in absolute gravimeters. The first method, that can be simply used in situ, is an empirical procedure based on the evaluation of the variability of g measurements against the amount of light limited by an iris diaphragm and transmitted to a photodetector. However, precision of this method depends on the beam quality similarly as in the case of the conventional method based on measurement of a beam width. The second method, that is more complex, is based on beam profiling in various distances and on calculation of the effective wavenumber using the second spatial derivative of a non-ideal beam field envelope. The measurement results achieved by both methods are presented on an example of two absolute gravimeters and the determined diffraction corrections are compared with the results obtained by measurements of beam width. Agreement of methods within about 1 mGal have been obtained with average diffraction corrections slightly exceeding +2 mGal for three FG5(X) gravimeter configurations.

Go to article

Bibliography

References

[1]Monchalin, J.P., Kelly, M.J., Thomas, J.E., Kurnit, N.A., Szöke, A., Zernike, F., Lee, P.H., Javan, A.(1981). Accurate laser wavelength measurement with a precision two-beam scanning Michelson in-terferometer.Appl Opt., 20(5), 736–57.

[2]Sasso, C.P., Massa, E., and Mana, G. (2016). Diffraction effects in length measurements by laserinterferometry.Optics Express, 24(6), 6522–6531. DOI: 10.1364/OE.24.006522

[3]Niebauer, T.M., Sasagawa, G.S., Faller, J.E., Hilt, R., Klopping, F. (1995). A new generation of abso-lute gravimeters.Metrologia, 32, 159–180.

[4]vanWestrum, D., Niebauer, T.M. (2003). The diffraction correction for absolute gravimeters.Metrologia, 40, 258–263.

[5]Robertsson, L. (2007). On the diffraction correction in absolute gravimetry.Metrologia, 44, 35–39.

Go to article

Authors and Affiliations

Petr Křen
Vojtech Pálinkáš
Download PDF Download RIS Download Bibtex

Abstract

For solving a partial different equation by a numerical method, a possible alternative may be either to use a mesh method or a meshless method. A flexible computational procedure for solving 1D linear elastic beam problems is presented that currently uses two forms of approximation function (moving least squares and kernel approximation functions) and two types of formulations, namely the weak form and collocation technique, respectively, to reproduce Element Free Galerkin (EFG) and Smooth Particle Hydrodynamics (SPH) meshless methods. The numerical implementation for beam problems of these two formulations is discussed and numerical tests are presented to illustrate the difference between the formulations.

Go to article

Authors and Affiliations

V.E. Rosca
V.M.A. Leitão
Download PDF Download RIS Download Bibtex

Abstract

This study aims to evaluate the efficiency of strengthening reinforced concrete beams using some valid strengthening materials and techniques. Using concrete layer, reinforced concrete layer and steel plates are investigated in this research. Experiments on strengthening beam samples of dimensions 100x150x1100 mm are performed. Samples are divided in to three groups. Group “A” is strengthened using 2 cm thickness concrete layer only (two types). Group “B” is strengthened using 2 cm thickness concrete layer reinforced with meshes (steel and plastic). Group “C” is strengthened using steel plates. The initial cracking load, ultimate load and crack pattern of tested beams are illustrated. The experimental results show that for group A and B, the ultimate strength, stiffness, ductility, and failure mode of RC beams, with the same thickness strengthening layer applied, will be affected by the mesh type, type of concrete layer. While for group C, these parameters affected by the fixation technique and adhesion type.

Go to article

Authors and Affiliations

Alaa A. Bashandy
Download PDF Download RIS Download Bibtex

Abstract

A compliant beam subjected to large deformation is governed by a multifaceted nonlinear differential equation. In the context of theoretical mechanics, solution for such equations plays an important role. Since it is hard to find closed-form solutions for this nonlinear problem and attempt at direct solution results in linearising the model. This paper investigates the aforementioned problem via the multi-step differential transformation method (MsDTM), which is well-known approximate analytical solutions. The nonlinear governing equation is established based on a large radius of curvature that gives rise to curvature-moment nonlinearity. Based on established boundary conditions, solutions are sort to address the free vibration and static response of the deforming flexible beam. The geometrically linear and nonlinear theory approaches are related. The efficacy of the MsDTM is verified by a couple of physically related parameters for this investigation. The findings demonstrate that this approach is highly efficient and easy to determine the solution of such problems. In new engineering subjects, it is forecast that MsDTM will find wide use.

Go to article

Bibliography

[1] L.L. Howell, S.P. Magleby, and B.M. Olsen. Handbook of Compliant Mechanisms. Wiley, 2013. doi: 10.1002/9781118516485.
[2] K.E. Bisshopp and D.C. Drucker. Large deflection of cantilever beams. Quarterly of Applied Mathematics, 3(3):272–275, 1945. doi: 10.1090/qam/13360.
[3] T.M. Wang. Nonlinear bending of beams with concentrated loads. Journal of the Franklin Institute, 285(5):386–390, 1968. doi: 10.1016/0016-0032(68)90486-9.
[4] T.M. Wang. Non-linear bending of beams with uniformly distributed loads. International Journal of Non-Linear Mechanics, 4(4):389–395, 1969. doi: 10.1016/0020-7462(69)90034-1.
[5] I.S. Sokolnikoff and R.D. Specht. Mathematical Theory of Elasticity. McGraw-Hill, New York, 1956.
[6] R. Frisch-Fay. Flexible bars. Butterworths, 1962.
[7] S.P. Timoshenko and J.M. Gere. Theory of Elastic Stability. Courier Corporation, 2009.
[8] L.L. Howell. Compliant Mechanisms. Wiley, New York, 2001.
[9] T. Beléndez, C. Neipp, and A. Beléndez. Large and small deflections of a cantilever beam. European Journal of Physics, 23(3):371–379, 2002. doi: 10.1088/0143-0807/23/3/317.
[10] T. Beléndez, M. Pérez-Polo, C. Neipp, and A. Beléndez. Numerical and experimental analysis of large deflections of cantilever beams under a combined load. Physica Scripta, 2005(T118):61–64. 2005. doi: 10.1238/Physica.Topical.118a00061.
[11] K. Mattiasson. Numerical results from large deflection beam and frame problems analysed by means of elliptic integrals. Interational Journal for Numerical Methods in Engineering, 17(1):145–153, 1981. doi: 10.1002/nme.1620170113.
[12] F. De Bona and S. Zelenika. A generalised elastica-type approach to the analysis of large displacements of spring-strips. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 211(7):509–517, 1997. doi: 10.1243/0954406971521890.
[13] H.-J. Su. A pseudorigid-body 3R model for determining large deflection of cantilever beams subject to tip loads. Journal of Mechanisms and Robotics, 1(2):021008, 2009. doi: 10.1115/1.3046148.
[14] H. Tari, G.L. Kinzel, and D.A. Mendelsohn. Cartesian and piecewise parametric large deflection solutions of tip point loaded Euler–Bernoulli cantilever beams. International Journal of Mechanical Sciences, 100:216–225, 2015. doi: 10.1016/j.ijmecsci.2015.06.024.
[15] Y.V. Zakharov and K.G. Okhotkin. Nonlinear bending of thin elastic rods. Journal of Applied Mechanics and Technical Physics, 43(5):739–744, 2002. doi: 10.1023/A:1019800205519.
[16] M. Batista. Analytical treatment of equilibrium configurations of cantilever under terminal loads using Jacobi elliptical functions. International Journal of Solids and Structures, 51(13):2308–2326, 2014, doi: 10.1016/j.ijsolstr.2014.02.036.
[17] R. Kumar, L.S. Ramachandra, and D. Roy. Techniques based on genetic algorithms for large deflection analysis of beams. Sadhana, 29(6):589–604, 2004.
[18] M. Dado and S. Al-Sadder. A new technique for large deflection analysis of non-prismatic cantilever beams. Mechanics Research Communications, 32(6):692–703, 2005. doi: 10.1016/j.mechrescom.2005.01.004.
[19] B.S. Shvartsman. Large deflections of a cantilever beam subjected to a follower force. Journal of Sound and Vibration, 304(3-5):969–973, 2007. doi: 10.1016/j.jsv.2007.03.010.
[20] M. Mutyalarao, D. Bharathi, and B.N. Rao. On the uniqueness of large deflections of a uniform cantilever beam under a tip-concentrated rotational load. International Journal of Non-Linear Mechanics, 45(4):433–441, 2010. doi: 10.1016/j.ijnonlinmec.2009.12.015.
[21] M.A. Rahman, M.T. Siddiqui, and M.A. Kowser. Design and non-linear analysis of a parabolic leaf spring. Journal of Mechanical Engineering, 37:47–51, 2007. doi: 10.3329/jme.v37i0.819.
[22] D.K. Roy and K.N. Saha. Nonlinear analysis of leaf springs of functionally graded materials. Procedia Engineering, 51:538–543, 2013. doi: 10.1016/j.proeng.2013.01.076.
[23] A. Banerjee, B. Bhattacharya, and A.K. Mallik. Large deflection of cantilever beams with geometric nonlinearity: Analytical and numerical approaches. International Journal of Non-Linear Mechanics, 43(5):366–376, Jun. 2008. doi: 10.1016/j.ijnonlinmec.2007.12.020.
[24] L. Chen. An integral approach for large deflection cantilever beams. International Journal of Non-Linear Mechanics, 45(3)301–305, 2010. doi: 10.1016/j.ijnonlinmec.2009.12.004.
[25] C.A. Almeida, J.C.R. Albino, I.F.M. Menezes, and G.H. Paulino. Geometric nonlinear analyses of functionally graded beams using a tailored Lagrangian formulation. Mechanics Research Communications, 38(8):553–559, 2011. doi: 10.1016/j.mechrescom.2011.07.006.
[26] M. Sitar, F. Kosel, and M. Brojan. Large deflections of nonlinearly elastic functionally graded composite beams. Archives of Civil and Mechanical Engineering, 14(4):700–709, 2014., doi: 10.1016/j.acme.2013.11.007.
[27] D.K. Nguyen. Large displacement behaviour of tapered cantilever Euler–Bernoulli beams made of functionally graded material. Applied Mathematics and Computation, 237:340–355, 2014. doi: 10.1016/j.amc.2014.03.104.
[28] S. Ghuku and K.N. Saha. A theoretical and experimental study on geometric nonlinearity of initially curved cantilever beams. Engineering Science and Technology, an International Journal, 19(1):135–146, 2016. doi: 10.1016/j.jestch.2015.07.006.
[29] A.M. Tarantino, L. Lanzoni, and F.O. Falope. The Bending Theory of Fully Nonlinear Beams. Springer, Cham, 2019. doi: 10.1007/978-3-030-14676-4.
[30] S.J. Salami. Large deflection geometrically nonlinear bending of sandwich beams with flexible core and nanocomposite face sheets reinforced by nonuniformly distributed graphene platelets. Journal of Sandwich Structures & Materials, 22(3):866–895, 2020. doi: 10.1177/1099636219896070.
[31] T.T. Akano. An explicit solution to continuum compliant cantilever beam problem with various variational iteration algorithms. Advanced Engineering Forum, 32:1–13, 2019. doi: 10.4028/www.scientific.net/aef.32.1.
[32] J.K. Zhou. Differential Transformation and its Applications for Electrical Circuits. Huazhong University Press, Wuhan, China, 1986.
[33] S.K. Jena and S. Chakraverty. Differential quadrature and differential transformation methods in buckling analysis of nanobeams. Curved and Layered Structures, 6(1)68–76, 2019. doi: 10.1515/cls-2019-0006.
[34] M. Kumar, G.J. Reddy, N.N. Kumar, and O A. Bég. Application of differential transform method to unsteady free convective heat transfer of a couple stress fluid over a stretching sheet. Heat Transfer – Asian Research, 48(2):582–600, 2019. doi: 10.1002/htj.21396.
[35] G.C. Shit and S. Mukherjee. Differential transform method for unsteady magnetohydrodynamic nanofluid flow in the presence of thermal radiation. Journal of Nanofluids, 8(5):998–1009, 2019. doi: 10.1166/jon.2019.1643.
[36] D. Nazari and S. Shahmorad. Application of the fractional differential transform method to fractional-order integro-differential equations with nonlocal boundary conditions. Journal of Computational and Applied Mathematics, 234(3):883–891, Jun. 2010. doi: 10.1016/j.cam.2010.01.053.
[37] M.A. Rashidifar and A.A. Rashidifar. Analysis of vibration of a pipeline supported on elastic soil using differential transform method. American Journal of Mechanical Engineering, 1(4):96–102, 2013. doi: 10.12691/ajme-1-4-4.
[38] Y. Xiao. Large deflection of tip loaded beam with differential transformation method. Advanced Materials Research, 250-253:1232–1235, 2011. doi: 10.4028/www.scientific.net/AMR.250-253.1232.
[39] Z.M. Odibat, C. Bertelle, M.A. Aziz-Alaoui, and G.H.E. Duchamp. A multi-step differential transform method and application to non-chaotic or chaotic systems. Computers & Mathematics with Applications, 59(4):1462–1472, 2010. doi: 10.1016/j.camwa.2009.11.005.
[40] A. Arikoglu and I. Ozkol. Solution of differential-difference equations by using differential transform method. Applied Mathematics and Computation, 181(1):153–162, 2006. doi: 10.1016/j.amc.2006.01.022.
Go to article

Authors and Affiliations

Theddeus Tochukwu Akano
1
Patrick Shola Olayiwola
1

  1. University of Lagos, Lagos, Nigeria.
Download PDF Download RIS Download Bibtex

Abstract

Recently, the authors proposed a geometrically exact beam finite element formulation on the Lie group SE(3). Some important numerical and theoretical aspects leading to a computationally efficient strategy were obtained. For instance, the formulation leads to invariant equilibrium equations under rigid body motions and a locking free element. In this paper we discuss some important aspects of this formulation. The invariance property of the equilibrium equations under rigid body motions is discussed and brought out in simple analytical examples. The discretization method based on the exponential map is recalled and a geometric interpretation is given. Special attention is also dedicated to the consistent interpolation of the velocities.

Go to article

Authors and Affiliations

Valentin Sonneville
Alberto Cardona
Olivier Brüls
Download PDF Download RIS Download Bibtex

Abstract

The first order variation of critical loads of thin-walled columns with bisymmetric open cross-sectiondue to some variations of the stiffness and location of bracing elements is derived. The con-siderations are based on the classical linear theory of thin-walled beams with non-deformablecross-section introduced by Vlasov [1]. Both lateral braces and braces that restraint warping andtorsion of the cross-section have been taken into account. In the numerical examples dealing withI-column, the functions describing the influence of location of the braces with unit stiffness on thecritical load of torsional and flexural buckling are derived. The linear approximation of the exactrelation of the critical load due to the variation of the stiffness and location of braces is determined.

Go to article

Authors and Affiliations

P. Iwicki
Download PDF Download RIS Download Bibtex

Abstract

The paper describes an experimental behaviour of the basalt fibre reinforced polymer composite by external strengthening to the concrete beams. The BFRP composite is wrapped at the bottom face of R.C beam as one layer, two layers, three layers and four layers. The different characteristics – are studied in – first crack load, ultimate load, tensile and compressive strain, cracks propagation, crack spacing and number of cracks etc. To – investigate, total of five beams size 100×160×1700 mm were cast. One beam is taken as control and others are strengthened with BFRP composite with layers. From this investigation, the first crack load is increased depending on the increment in layers from 6.79% to 47.98%. Similarly, the ultimate load carrying – capacity is increased from 5.66% to 20%. The crack’s spacing is also reduced with an increase in the number of layers.

Go to article

Authors and Affiliations

A. Chandran
M. Neelamegam
Download PDF Download RIS Download Bibtex

Abstract

This paper is devoted to the application of ultrasonic wave propagation phenomena for the diagnostics of prestressed, concrete, bridge T-beams. A multi-point damage detection system is studied with use of numerically obtained data. The system is designed to detect the presence of the material discontinuities as well as their location.

Go to article

Authors and Affiliations

A. Mariak
K. Wilde
Download PDF Download RIS Download Bibtex

Abstract

Two fundamental challenges in investigation of nonlinear behavior of cantilever beam are the reliability of developed theory in facing with the reality and selecting the proper assumptions for solving the theory-provided equation. In this study, one of the most applicable theory and assumption for analyzing the nonlinear behavior of the cantilever beam is examined analytically and experimentally. The theory is concerned with the slender inextensible cantilever beam with large deformation nonlinearity, and the assumption is using the first-mode discretization in dealing with the partial differential equation provided by the theory. In the analytical study, firstly the equation of motion is derived based on the theory of large deformable inextensible beam. Then, the partial differential equation of motion is discretized using the Galerkin method via the assumption of the first mode. An exact solution to the obtained nonlinear ordinary differential equation is developed, because the available semi analytical and approximated methods, due to their limitations, are not always sufficiently reliable. Finally, an experiment set-up is developed to measure the nonlinear frequency of oscillations of an aluminum beam within a domain of initial displacement. The results show that the proposed analytical method has excellent convergence with experimental data.

Go to article

Authors and Affiliations

Majid Jamal-Omidi
Mahdi Shayanmehr
Saeid Sazesh

This page uses 'cookies'. Learn more