Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 22
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The biofiltration process in the biologically activated carbon filters (BAC) is one of advanced methods of water treatment. It enables efficient elimination of dissolved organic matter and some inorganic pollutants. The production of high-quality drinking water requires an appropriate method of filter work control based on biofilm growth assessment. The first aim of the study was to assess the microbial development in beds of two BAC filters with the use of various methods. The second aim was to compare the obtained results and indicate the method which could support filter operators during routine control of biofiltration process. The study was carried out in a pilot scale on models of BAC filters during two filter runs. The analysis of Microorganisms was performed in water samples collected from different depths of the filter beds with the use of culture method (HPC), metabolica ctivity assay (with the FDA), epifluorescence microscopy – total cell count method (TCC) and biochemical method (system Vitek 2 Compact). No statistical correlation between HPC and metabolic activity assay was noted. Total bacteria number determined with the use of TCC was approx. 100–900 times higher than in the HPC method. The biochemical tests revealed the presence of several Gram-negative species. The comparison of the applied methods shows that microbial activity assay is the most useful, fast and low-cost method which may be applied additionally to the HPC method at standard water treatment plant laboratory.
Go to article

Bibliography

  1. Adam, G. & Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology & Biochemistry, 33, 7-8, pp. 943-951, DOI: 10.1016/S0038-0717(00)00244-3
  2. Battin, T.J. (1997). Assessment of fluorescein diacetate hydrolysis as a measure of total esterase activity in natural stream sediment biomass. The Science of the Total Environment, 198, 1, pp. 51-60, DOI: 10.1016/S0048-9697(97)05441-7
  3. Boulos, L., Prévost, M., Barbeau, B., Coallier, J. & Desjardins, R. (1999). LIVE/DEAD® BacLightTM: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. Journal of Microbiological Methods, 37, 1, pp.77-86, DOI: 10.1016/s0167-7012(99)00048-2
  4. Burtscher, M.M., Zibuschka, F., Mach1, R.L., Lindne, G. & Farnleitner, A.H. (2009). Heterotrophic plate count vs. in situ bacterial 16S rRNA gene amplicon profiles from drinking water reveal completely different communities with distinct spatial and temporal allocations in a distribution net. Water SA, 35, 4, pp. 495-504, DOI: 10.4314/wsa.v35i4.76809
  5. Chaukura, N., Marais, S.S., Moyo, W., Mbali, N., Thakalekoala, L.C., Ingwani, T., Mamba, B.B., Jarvis, P. & Nkambule, T.T.I. (2020). Contemporary issues on the occurrence and removal of disinfection byproducts in drinking water - A review,  Journal of En-vironmental Chemical Engineering, 8, 2, 103659, DOI: 10.1016/j.jece.2020.103659
  6. Chrzanowski, T.H., Crotty, R.D., Hubbard, J.G. & Welch, R.P. (1984). Applicability of the fluorescein diacetate method of detecting active bacteria in freshwater. Microbial Ecology, 10, 2, pp.179-185, DOI: 10.1007/BF02011424.
  7. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption.
  8. Douterelo, I., Boxall, J.B., Deines, P., Sekar, R., Fish, K.E. & Biggs, C.A. (2014). Methodological approaches for studying the microbial ecology of drinking water distribution systems, Water Research 65, pp.134-156, DOI: 0.1016/j.watres.2014.07.008
  9. Elhadidy, A.M., Van Dyke, M.I., Chen, F., Peldszus, S. & Huck, P.M. (2017). Development and application of an improved protocol to characterize biofilms in biologically active drinking water filters, Environ. Sci. Water Res. Technol., 3, pp. 249–261, DOI: 10.1039/C6EW00279J
  10. Fu, J., Lee, W.-N., Coleman, C., Nowack, K., Carter, J. & Huang, C.-H. (2017). Removal of disinfection byproduct (DBP) precursors in water by two-stage biofiltration treatment. Water Research, 123, pp. 224-235 DOI: 10.1016/j.watres.2017.06.073
  11. Garrity G.M. (ed.) (2005a) Bergey’s Manual of Systematic Bacteriology. Vol. 2 The Proteobacteria, part B The Gammaproteobacteria, Springer, New York.
  12. Garrity G.M. (ed.) (2005b) Bergey’s Manual of Systematic Bacteriology. Vol. 2 The Proteobacteria, part C The Alpha- Beta-, Delta- and Epsilonproteobacteria. Springer, New York.
  13. Hasan, H.A., Muhammad, M.H. & Ismail, N.I. (2020), A review of biological drinking water treatment technologies for contaminants removal from polluted water resources, Journal of Water Process Engineering, 33, 101035, DOI: 10.1016/j.jwpe.2019.101035
  14. Holc, D., Pruss, A., Michałkiewicz, M. & Cybulski Z. (2016). Acceleration of carbon filters activation - experiments of pilot scale technological investigations. Water supply and water quality. PZITS, Poznań, pp. 683-703 (in Polish).
  15. Holc, D., Pruss, A., Michałkiewicz, M. & Cybulski Z. (2016). Effectiveness of organic compounds removing during water treatment by filtration through a biologically active carbon filter with the identification of microorganisms. Annual Set The Environment Protection, 18, 2, pp.235-246 (in Polish).
  16. Hopkins, Z.R., Sun, M., DeWitt, J.C. & Knappe, D.R.U. (2018). Recently Detected Drinking Water Contaminants: GenX and Other Per‐and Polyfluoroalkyl Ether Acids. Journal‐American Water Works Association, 110, 7, pp. 13-28, DOI: doi.org/10.1002/awwa.1073
  17. Kaarela, O. E., Harkki, H. A., Palmroth, M. R. T. & Tuhkanen T. A. (2015). Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures, Environmental Technology, 36, 5-8, pp. 681-692, DOI: 10.1080/09593330.2014.958542
  18. Kaleta, J., Kida, M., Koszelnik, P., Papciak, D., Puszkarewicz, A. & Tchórzewska-Cieślak B. (2017). The use of activated carbons for removing organic matter from groundwater, Archives of Environmental Protection, 43, 3, pp. 32-41, DOI:10.1515/aep-2017-0031
  19. Kijowska, E., Leszczyńska, M. & Sozański, M.M. (2001): Metabolic activity test in investigation of biodegradation in biological filters, Water, Science & Technology: Water Supply, 1, 2, pp.151-158, DOI: doi.org/10.2166/ws.2001.0032
  20. Kołaski, P., Wysocka, A., Pruss, A., Lasocka-Gomuła, I., Michałkiewicz, M. & Cybulski Z. (2019). Removal of Organic Matter from Water During Rapid Filtration through a Biologically Active Carbon Filter Beds – a Full Scale Technological Investigation, Annual Set The Environment Protection, 21, 2, pp. 1136-1155
  21. Kołwzan, B. (2011). Analysis of biofilms – their formation and functioning. Environmental Pollution Control, 33, 4, pp. 3-14 (in Polish)
  22. Komorowska-Kaufman, M., Ciesielczyk, F., Pruss, A. & Jesionowski T. (2018). Effect of sedimentation time on the granulometric composition of suspended solids in the backwash water from biological activated carbon filters. E3S Web of Conferences, 44, 00072. EDP Sciences, DOI: 10.1051/e3sconf/20184400072
  23. Korotta-Gamage, S.M. & Sathasivan, A. (2017). A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process, Chemosphere, 167, pp. 120-138, DOI: 10.1016/j.chemosphere.2016.09.097
  24. Liao, X., Chen, C., Chang, C.-H., Wang, Z., Zhang, X. & Xie, S. (2012) Heterogeneity of microbial community structures inside the up-flow biological activated carbon (BAC) filters for the treatment of drinking water. Biotechnology and Bioprocess Engineering, 17, pp. 881–886, DOI: 10.1007/s12257-012-0127-x
  25. Lis, A., Pasoń, Ł. & Stępniak, L. (2016). Review of Methods Used to Indication of Biological Carbon Filters Activity. Engineering and Protection of Environment, 19, 3, pp. 413-425, DOI: 10.17512/ios.2016.3.11 (in Polish)
  26. Mądrecka, B., Komorowska-Kaufman, M., Pruss, A. & Holc D. (2018). Metabolic activity tests in organic matter biodegradation studies in biologically active carbon filter beds. Water Supply and Wastewater Disposal, Politechnika Lubelska, 163-177.
  27. Oliver, J.D. (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiology Review, 34, 4, pp. 415-425, DOI: 10.1111/j.1574-6976.2009.00200.x
  28. Olszewska, M. & Łaniewska-Trokenheim, Ł. (2013) Fluorescence-based methods of cell staining in physiological state studies of bacteria. Advancements of Microbiology, 52, 4, pp. 409-418 (in Polish).
  29. Papciak D., Kaleta J., Puszkarewicz A., Tchórzewska-Cieślak B. (2016). The use of biofiltration process to remove organic matter from groundwater. Journal of Ecological Engineering, 17, 3, pp. 119–124, DOI: 10.12911/22998993/63481
  30. Pincus, D. H. (2013). Microbial identification using the bioMérieux Vitek 2 system, Encyclo-pedia of Rapid Microbiological Methods, PDA-DHI, p.1-31. (https://store.pda.org/tableofcontents/ermm_v2_ch01.pdf )
  31. Pruss, A. (2007): Contribution of Biofilm Thickness on Sand Filter Grains to Oxygen Uptake During Ammonia Nitrogen Removal. Environmental Pollution Control, 1, pp. 35-39 (in Polish).
  32. Pruss, A., Maciołek, A. & Lasocka-Gomuła I. (2009). Effect of the Biological Activity of Carbon Filter Beds on Organic Matter Removal from Water. Environmental Pollution Control, 31, pp. 31-34 (in Polish).
  33. Sadowska J. & Grajek W. (2009). Analysis of physiological state of single bacterial cell using fluorescent staining methods. Biotechnologia, 4, pp. 102-114 (in Polish).
  34. Seredyńska-Sobecka, B., Tomaszewska, M., Janus, M. & Morawski A. W. (2006). Biological activation of carbon filters. Water Research, 40, 2, pp.355-363, DOI: 10.1016/j.watres.2005.11.014
  35. Simpson D. R. (2008). Biofilm processes in biologically active carbon water purification, Water Research, 42, 12, pp. 2839-2848, DOI: 10.1016/j.watres.2008.02.025
  36. Smith, A.C. & Hussey M.A. (2016) Gram Stain Protocols, American Society for Microbiology, pp. 1-9.
  37. (https://asm.org/getattachment/5c95a063-326b-4b2f-98ce-001de9a5ece3/gram-stain-protocol-2886.pdf)
  38. Snyder, S.A., Adham, S., Redding, A.M., Cannon, F.S., DeCarolis, J., Oppenheimer, J., Wert, E.C. & Yoon, Y. (2007). Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination, 202, 1-3, pp. 156-181, DOI: 10.1016/j.desal.2005.12.052
  39. Standard Methods for the Examination of Water and Wastewater, 23’rd Edition, APHA, 2017 Washinghton
  40. Szeląg-Wasielewska, E., Joniak, T., Michałkiewicz, M., Dysarz, T. & Mądrecka, B. (2009) Bacterioplankton of the Warta River in relation to physicochemical parameters and flow rate. Ecohydrology & Hydrobiology, 9, 2-4, pp. 225-236. DOI: 10.2478/v10104-010-0008-x
  41. Szuster-Janiaczyk A. (2016). The Microbiological Evaluation of Deposits Come from Water Network on the Example of Selected Water Supply System. Annual Set The Environment Protection, 18, 2, pp. 815–827. (in Polish)
  42. van der Kooij, D. & van der Wielen, P.W.J.J. (2014). Microbial Growth in Drinking-Water Supplies. Problems, Causes, Control and Research Needs, IWA Publishing, UK
  43. Van Nevel, S., Koetzsch, S., Proctor, C. R., Besmer, M. D., Prest, E. I., Vrouwenvelder, J. S., Knezev, A., Boon, N. & Hammes F. (2017). Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. Water Research, 113, pp. 191-206. DOI: 10.1016/j.watres.2017.01.065
  44. Wagner, M., Amann, R., Lemmer, H. & Schleifer, K. (1993). Probing activated sludge with oligonucleotides specific for Proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Applied and Environmental Microbiology, 59, 5, pp. 1520-1525, DOI: 10.1128/AEM.59.5.1520-1525.1993
  45. WHO (2003). Expert consensus. In: Bartram J., Cotruvo J.A., Exner M., Fricker C.R., Glasmacher A. (Eds.) Heterotrophic plate counts and drinking-water safety-the significance of HPCs for Water quality and human health. IWA Publishing on behalf of the World Health Organisation, London.
  46. Zamule, S.M., Dupre, C.E., Mendola, M.L., Widmer, J., Shebert, J.A., Roote, C.E. & Das P. (2021). Bioremediation potential of select bacterial species for the neonicotinoid insecticides, thiamethoxam and imidacloprid. Ecotoxicology and Environmental Safety 209, 111814; DOI: 10.1016/j.ecoenv.2020.111814
  47. Zhang, S., Gitungo, S.W., Axe, L., Raczko, R.F. & Dyksen, J.E. (2017). Biologically active filters – an advanced water treatment process for contaminants of emerging concern. Water Research, 114, pp. 31-41, DOI: 10.1016/j.watres.2017.02.014
  48. Ziglio, G., Andreottola, G., Barbesti, S., Boschetti, G., Bruni, L., Foladori, P. & Villa, R. (2002). Assessment of activated sludge viability with flow cytometry. Water Research, 36, 2, pp. 460-468, DOI: 10.1016/s0043-1354(01)00228-7
Go to article

Authors and Affiliations

Dorota Holc
1
ORCID: ORCID
Beata Mądrecka-Witkowska
1
ORCID: ORCID
Małgorzata Komorowska-Kaufman
1
ORCID: ORCID
Elżbieta Szeląg-Wasielewska
2
Alina Pruss
1
ORCID: ORCID
Zefiryn Cybulski
3

  1. Poznan University of Technology, Institute of Environmental Engineering and Building Installations, Poland
  2. Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Water Protection, Poland
  3. Greater Poland Cancer Center, Microbiology Laboratory, Poland
Download PDF Download RIS Download Bibtex

Abstract

A mathematical model of a plane, steady state biofilm, with the use of a single substrate kinetics, was proposed. A set of differential equations was solved. In order to analyse the biofilm’s behaviour, a number of simulations were performed. The simulations included varying process parameters such as detachment coefficient and substrate loading. Two detachment models were taken into consideration: one describing the detachment ratio as proportional to the thickness of the biofilm, and the other one proportional to the thickness of the biofilm squared. The results provided information about substrate and live cell distribution in biofilm and the influence of certain parameters on biofilm behaviour.

Go to article

Authors and Affiliations

Stanisław Ledakowicz
Michał Blatkiewicz
Bolesław Tabiś
Download PDF Download RIS Download Bibtex

Abstract

Enterococcus hirae belongs in the Enterococcus faecium group within the genus Enterococcus. This species occurs naturally in the environment, commensally in the alimentary tracts of animals, and pathologically for example in humans with urinary infections. Some strains of E. hirae possess virulence factors, including biofilm formation. Biofilm growth protects bacteria against host de- fences; biofilm can be a source of persistent infection. Testing bacterial strains for their ability to form biofilm might therefore facilitate their treatment or prevention. This study focuses on bio- film formation by E. hirae strains derived from various animals. This kind of testing has never been done before. A total of 64 identified E. hirae from laying hens, ducks, pheasants, ostriches, rabbits, horses and a goat were tested by means of three methods; using Congo red agar, the tube method and microtiter plate agar. The majority of strains were found to form biofilm. 62.5% of strains were biofilm-forming, four categorized as highly positive (OD570 ≥1); most strains were low-grade biofilm positive (0.1 ≤ OD 570 < 1). Related to poultry, 55 E. hirae strains were tested nd found to produce biofilm; 24 strains did not form biofilm, 31 strains were biofilm-forming; 27 strains showed low-grade biofilm formation, and four strains were highly biofilm-forming. Four strains from hens and ostriches reached the highest OD570 values, more than 0.500. Rabbit-derived E. hirae strains as well as strains isolated from horses and the goat were low-grade bio- film-forming. Microtiter plate assay proved to be the best tool for testing the in vitro biofilm for- mation capacity of E. hirae strains from different species of animals.

Go to article

Authors and Affiliations

E. Bino
A. Lauková
A. Kandričáková
R. Nemcová
Download PDF Download RIS Download Bibtex

Abstract

The suitability of low-cost impedance sensors for microbiological purposes and biofilm growth monitoring was evaluated. The sensors with interdigitated electrodes were fabricated in PCB and LTCC technologies. The electrodes were golden (LTCC) or gold-plated (PCB) to provide surface stability. The sensors were used for monitoring growth and degradation of the reference ATCC 15442 Pseudomonas aeruginosa strain biofilm in invitro setting. During the experiment, the impedance spectra of the sensors were measured and analysed using electrical equivalent circuit (EEC) modelling. Additionally, the process of adhesion and growth of bacteria on a sensor’s surface was assessed by means of the optical and SEM microscopy. EEC and SEM microscopic analysis revealed that the gold layer on copper electrodes was not tight, making the PCB sensors susceptible to corrosion while the LTCC sensors had good surface stability. It turned out that the LTCC sensors are suitable for monitoring pseudomonal biofilm and the PCB sensors are good detectors of ongoing stages of biofilm formation.

Go to article

Authors and Affiliations

Konrad Chabowski
Adam F. Junka
Tomasz Piasecki
Damian Nowak
Karol Nitsch
Danuta Smutnicka
Marzenna Bartoszewicz
Magdalena Moczała
Patrycja Szymczyk
Download PDF Download RIS Download Bibtex

Abstract

The present work focuses on problems connected with the location and sampling method for pecton (biofilm) in sewage treatment plants. We also discuss the amount and quantity of pecton necessary to compose a representative sample. Comparisons of other selected contamination indicators in place of pecton sampling, are also presented. Research carried out at the WWTP "Hajdow" demonstrated that everything (starting from grid chambers), coming into contact with sewage surfaces is covered with biofilm This biological formation does not cause any significant changes in sewage quality due to its relatively small surface compared to the sewage flux. As presented in the following analysis, pecton can be used for bioindication of sewage quality. This is possible because the organisms forming these communities use substances contained in flowing sewage as nutritional substrates. In such cases the wastewater purification level in biological sewage treatment plants can, in a way similar to rivers, be determined based on bioindication methods using existing similarities between the prevailing processes and organisms.
Go to article

Authors and Affiliations

Grzegorz Łagód
Henryk Sobczuk
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The study concerns modeling and simulation of the growth of biofilms with heterogeneous structures with a discrete mathematical model based on theory of cellular automata. The article presents two-dimensional density distributions of biofilms for microbial processes: oxidation of ammonium by Nitrosomonas europaea bacteria and glucose utilization by Pseudomonas aeruginosa bacteria. The influence of limiting substrate concentration in the liquid phase on biofilm structure was determined. It has been shown that the value of death rate coefficient of microorganisms has the qualitative and quantitative influence on the density and porosity of the biofilm.

Go to article

Authors and Affiliations

Szymon Skoneczny
Download PDF Download RIS Download Bibtex

Abstract

Azo dye wastewater treatment is urgent necessary nowadays. Electrochemical technologies commonly enable more efficient degradation of recalcitrant organic contaminants than biological methods, but those rely greatly on the energy consumption. A novel process of biofilm coupled with electrolysis, i.e., bioelectrochemical system (BES), for methyl orange (MO) dye wastewater treatment was proposed and optimization of main influence factors was performed in this study. The results showed that BES had a positive effect on enhancement of color removal of MO wastewater and 81.9% of color removal efficiency was achieved at the optimum process parameters: applied voltage of 2.0 V, initial MO concentration of 20 mg/L, glucose loads of 0.5 g/L and pH of 8.0 when the hydraulic retention time (HRT) was maintained at 3 d, displaying an excellent color removal performance. Importantly, a wide range of effective pH, ranging from 6 to 9, was found, thus greatly favoring the practical application of BES described here. The absence of a peak at 463 nm showed that the azo bond of MO was almost completely cleaved after degradation in BES. From these results, the proposed method of biodegradation combined with electrochemical technique can be an effective technology for dye wastewater treatment and may hopefully be also applied for treatment of other recalcitrant compounds in water and wastewater.

Go to article

Authors and Affiliations

Haiming Zou
Lin Chu
Yan Wang
Download PDF Download RIS Download Bibtex

Abstract

A model of bacterial filtration on fibrous filter media is developed. The single fibre efficiency as well as the efficiency of the whole filter - at the onset of the process and the evolution of those quantities - are analysed. The differences between the numerical modelling of colloidal particles and bacteria are stressed in detail. The main differences are the active motion ability of bacteria and biofilm formation. The parameters of the model were identified based on the literature data.

Go to article

Authors and Affiliations

Jakub M. Gac
Leon Gradoń
Download PDF Download RIS Download Bibtex

Abstract

A mathematical model for a two-phase fluidised bed bioreactor with liquid recirculation and an external aerator was proposed. A stationary nonlinear analysis of such a bioreactor for an aerobic process with double-substrate kinetics was carried out. The influences of a volumetric fraction of solid carriers in the liquid phase, the rate of active biomass transfer from the biofilm to the liquid, the concentration of carbonaceous substrate, the mean residence time of the liquid and the efficiency of the external aerator on the steady state characteristics of the bioreactor were described. A method for determination of the minimal recirculation ratio related to oxygen demand and fluidised bed conditions was presented. On the basis of the obtained results, it is possible to choose reasonable operating conditions of such plants and to determine constraints, while considering acceptable concentrations of a toxic substrate being degraded.

Go to article

Authors and Affiliations

Bolesław Tabiś
Wojciech S. Stryjewski
Download PDF Download RIS Download Bibtex

Abstract

Results of the studies for determining fractions of organic contaminants in a pretreated petrochemical wastewater flowing into a pilot Aerated Submerged Fixed-Bed Biofilm Reactor (ASFBBR) are presented and discussed. The method of chemical oxygen demand (COD) fractionation consisted of physical tests and biological assays. It was found that the main part of the total COD in the petrochemical, pretreated wastewater was soluble organic substance with average value of 57.6%. The fractions of particulate and colloidal organic matter were found to be 31.8% and 10.6%, respectively. About 40% of COD in the influent was determined as readily biodegradable COD. The inert fraction of the soluble organic matter in the petrochemical wastewater constituted about 60% of the influent colloidal and soluble COD. Determination of degree of hydrolysis (DH) of the colloidal fraction of COD was also included in the paper. The estimated value of DH was about 62%. Values of the assayed COD fractions were compared with the same parameters obtained for municipal wastewater by other authors.

Go to article

Authors and Affiliations

Włodzimierz Wójcik
Karol Trojanowicz
Download PDF Download RIS Download Bibtex

Abstract

This paper presents investigations on the removal of cyclohexane and ethanol from air in polyurethane- -packed biotrickling filters, inoculated with Candida albicans and Candida subhashii fungal species. Results on process performance together with flow cytometry analyses of the biofilm formed over packing elements are presented and discussed. The results indicate that the presence of ethanol enhances the removal efficiency of cyclohexane from air. This synergistic effect may be attributed to both co-metabolism of cyclohexane with ethanol as well as increased sorption efficiency of cyclohexane to mineral salt medium in the presence of ethanol. Maximum elimination capacities of 89 g m-3 h-1 and 36.7 g m-3 h-1 were noted for cyclohexane and ethanol, respectively, when a mixture of these compounds was treated in a biofilter inoculated with C. subhashii. Results of flow cytometry analyses after 100 days of biofiltration revealed that about 91% and 88% of cells in biofilm remained actively dividing, respectively for C. albicans and C. subhashii species, indicating their good condition and ability to utilize cyclohexane and ethanol as a carbon source.
Go to article

Bibliography

  1. Avalos, Ramirez, A., Jones, J.P. & Heitz, M. (2007). Biotrickling filtration of air contaminated with ethanol, Journal of Chemical Technology and Biotechnology, 82, pp. 149–157, https://doi.org/10.1002/jctb.1644.
  2. Cheng, Y., He, H., Yang, C., Zeng, G., Li, X., Chen, H. & Yu, G. (2016). Challenges and solutions for biofiltration of hydrophobic volatile organic compounds, Biotechnology Advances, 34, 1091–1102, https://doi.org/10.1016/j.biotechadv.2016.06.007
  3. Cheng, Y., Li, X., Liu, H., Yang, C., Wu, S., Du, C., Nie, L. & Zhong, Y. (2020). Effect of presence of hydrophilic volatile organic compounds on removal of hydrophobic n-hexane in biotrickling filters, Chemosphere 252, 126490, https://doi.org/10/1016/j.chemosphere.2020.126490.
  4. Cox, H.H.J., Sexton, T., Shareefdeen, Z.M. & Deshusses, M.A. (2001). Thermophilic Biotrickling Filtration of Ethanol Vapors, Environmental Science and Technology, 35, pp. 2612–2619, https://doi.org/10.1021/es001764h.
  5. Ferdowsi, M., Avalos, Ramirez, A., Jones, J.P. & Heitz, M. (2017). Elimination of mass transfer and kinetic limited organic pollutants in biofilters: A review, International Biodeterioration and Biodegradation, 119, pp. 336–348,https://doi.org/10.1016/j.ibiod.2016.10.015.
  6. Gospodarek, M., Rybarczyk, P., Szulczyński, B. & Gębicki, J. (2019). Comparative Evaluation of Selected Biological Methods for the Removal of Hydrophilic and Hydrophobic Odorous VOCs from Air, Processes 7, 187, https://doi.org/10.3390/pr7040187.
  7. He, S., Ni, Y., Lu, L., Chai, Q., Yu, T., Shen, Z. & Yang, C. (2020). Simultaneous degradation of n-hexane and production of biosurfactants by Pseudomonas sp. strain NEE2 isolated from oil-contaminated soils, Chemosphere 242, 125237, https://doi.org/10.1016/j.chemosphere.2019.125237.
  8. Martinez-Rojano, H., Mancilla-Ramirez, J., Quiñonez-Diaz, L. & Galindo-Sevilla, N. (2008). Activity of hydroxyurea against Leishmania mexicana, Antimicrobial Agents Chemotheraphy 52, pp. 3642–3647, https://doi.org/10.1128/aac.00124-08.
  9. Miller, U., Sówka, I. & Adamiak, W. (2019). The effect of betaine on the removal of toluene by biofiltration, SN Applied Sciences 1, https://doi.org/10.1007/s42452-019-0832-6.
  10. Miller, U., Sówka, I. & Adamiak, W. (2020). The use of surfactant from the Tween group in toluene biofi ltration, Archives of Environmental Protection, Vol. 46 no. 2 pp. 53–57, DOI: 10.24425/aep.2020.133474.
  11. Mudliar, S., Giri, B., Padoley, K., Satpute, D., Dixit, R., Bhatt, P., Pandey, R., Juwarkar, A. & Vaidya, A. (2010). Bioreactors for treatment of VOCs and odours – A review, Journal of Environmental Management 91, pp. 1039–1054,https://doi.org/10.1016/j.jenvman.2010.01.006.
  12. Purswani, J., Juárez, B., Rodelas, B., Gónzalez-López, J. & Pozo, C. (2011). Biofilm formation and microbial activity in a biofilter system in the presence of MTBE, ETBE and TAME, Chemosphere 85, pp. 616–624, https://doi.org/10.1016/j.chemosphere.2011.06.106.
  13. Ramani, R., Ramani, A. & Wong, S.J. (1997). Rapid Flow Cytometric Susceptibility Testing of Candida albicans, Journal of Clinical Microbiology 35(9):2320-4, DOI: 10.1128/jcm.35.9.2320-2324.1997.
  14. Rybarczyk, P., Szulczyński, B. & Gębicki, J. (2020). Simultaneous Removal of Hexane and Ethanol from Air in a Biotrickling Filter – Process Performance and Monitoring Using Electronic Nose, Sustainability 12, 387, https://doi.org/10.3390/su12010387.
  15. Rybarczyk, P., Szulczyński, B., Gębicki, J. & Hupka, J. (2019a). Treatment of malodorous air in biotrickling filters: A review, Biochemical Engineering Journal 141, pp. 146–162, https://doi.org/10.1016/j.bej.2018.10.014.
  16. Rybarczyk, P., Szulczyński, B., Gospodarek, M. & Gębicki, J. (2019b). Effects of n-butanol presence, inlet loading, empty bed residence time and starvation periods on the performance of a biotrickling filter removing cyclohexane vapors from air, Chemical Papers 74, pp. 1039–1047,https://doi.org/10.1007/s11696-019-00943-2.
  17. Salamanca, D., Dobslaw, D. & Engesser, K.-H. (2017). Removal of cyclohexane gaseous emissions using a biotrickling filter system, Chemosphere 176, pp. 97–107, https://doi.org/10.1016/j.chemosphere.2017.02.078.
  18. Spigno, G., Pagella, C., Fumi, M.D., Molteni, R. & De Faveri, D.M. (2003). VOCs removal from waste gases: Gas-phase bioreactor for the abatement of hexane by Aspergillus niger, Chemical Engineering Science 58, pp. 739–746, https://doi.org/10.1016/S0009-2509(02)00603-6.
  19. Yalkowsky, S.H., He, Y. & Jain, P. (2016). Handbook of Aqueous Solubility Data, Handbook of Aqueous Solubility Data. CRC Press,https://doi.org/10.1201/ebk1439802458.
  20. Yang, C., Chen, H., Zeng, G., Yu, G. & Luo, S. (2010). Biomass accumulation and control strategies in gas biofiltration, Biotechnology Advances 28, 4, pp. 531–540, https://doi.org/10.1016/j.biotechadv.2010.04.002.
  21. Yang, C., Qian, H., Li, X., Cheng, Y., He, H., Zeng, G. & Xi, J. (2018). Simultaneous Removal of Multicomponent VOCs in Biofilters, Trends in Biotechnology 36, 7, pp. 673–685, https://doi.org/10.1016/j.tibtech.2018.02.004.
  22. Zhang, Y., Liss, S.N. & Allen, D.G. (2006). The effects of methanol on the biofiltration of dimethyl sulfide in inorganic biofilters, Biotechnology and Bioengineering 95, pp. 734–743, https://doi.org/10.1002/bit.21033.
  23. Zhang, Y., Liu, J., Qin, Y., Yang, Z., Cao, J., Xing, Y. & Li, J. (2019). Performance and microbial community evolution of toluene degradation using a fungi-based bio-trickling filter, Journal of Hazardous Materials 365, pp. 642–649, https://doi.org/10.1016/j.jhazmat.2018.11.062.
  24. Zhanga, Y., Denga, W., Qina, Y., Yanga, Z., Liua, J. & Lia, J. (2018) Research on Simultaneous Removal of Cyclohexane and Methyl Acetate in Biotrickling Filters, Proceedings of the 2nd International Conference of Recent Trends in Environmental Science and Engineering, Niagara Falls, Canada, https://doi.org/10.11159/rtese18.107.
Go to article

Authors and Affiliations

Piotr Rybarczyk
1
ORCID: ORCID
Milena Marycz
1
Bartosz Szulczyński
1
ORCID: ORCID
Anna Brillowska-Dąbrowska
2
Agnieszka Rybarczyk
3
Jacek Gębicki
1
ORCID: ORCID

  1. Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdańsk University of Technology
  2. Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology
  3. Department of Histology, Faculty of Medicine, Medical University of Gdańsk
Download PDF Download RIS Download Bibtex

Abstract

Salmonella contamination in poultry feed is one of the main issues in poultry industry and public health. The aim of the present study was molecular detection and typing of Salmonella serotypes isolated from poultry feeds. Moreover, we determined the antibiotic resistance pattern and the ability of biofilm formation in the serotypes. To this end, eighty feed samples were collected from aviculture depots. Salmonella serotypes were identified by culture and PCR methods. For serological identification, a slide agglutination test was used. BOXAIR and rep-PCR methods were applied to evaluate the diversity of serotypes. The disc diffusion method was performed to evaluate the antibiotic susceptibility of serotypes to sixteen antibiotics. Biofilm formation was also assessed by the microtiter-plate test. From a total of 80 feed samples, 30 samples were contaminated with Salmonella spp., which were divided into 5 different serotypes belonging to B, C, and D serogroups. BOXAIR-PCR (D value [DI] 0.985) and rep-PCR (DI 0.991) fingerprinting of isolates revealed 23 and 19 reproducible fingerprint patterns, respectively. A higher antibiotic resistance was observed to ampicillin and doxycycline (100% each), followed by chloramphenicol (83.33%) and tetracycline (73.33%). Multidrug resistance (MDR) was detected in all Salmonella serotypes. Half of the serotypes possessed the ability of biofilm formation with varied adhesion strengths. These results revealed the high and unexpected prevalence of Salmonella serotypes in poultry feed with MDR and biofilm formation ability. BOXAIR and rep-PCR revealed a high diversity of Salmonella serotypes in feeds and subsequently indicated variation in the source of Salmonella spp. The unknown sources harboring high diversity of Salmonella serotypes indicated poor control, which could cause problems for feed manufacturing.
Go to article

Authors and Affiliations

G. Shahbazi
1
J. Shayegh
1
C. Ghazaei
2
M.H.M. Ghazani
1
S. Hanifian
3

  1. Department of Veterinary Medicine, Faculty of Veterinary and Agriculture, Shabestar Branch, Islamic Azad University, Shabestar, Iran
  2. Department of Microbiology, University of Mohaghegh Ardabili, Ardabil, Iran
  3. Department of Food Science and Technology, Biotechnology Research Center,Tabriz Branch, Islamic Azad University, Tabriz, Iran
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study was to evaluate in detail both the in vivo and in vitro efficacy of the enzyme agents, ZYMOX® Plus Otic (ZYMOX-P), in the treatment of canine otitis externa (OE). Eight dogs with a diagnosis of non-seasonal severe chronic OE were recruited for the study. ZYMOX-P was administered for 2-4 weeks. The Otitis Index Score (OTIS3) and bacteria or yeast colony growth were measured. Also, minimum biofilm (BF) formation inhibition concentration (MBIC) and BF bactericidal concentration (BBC) were measured in vitro. OTIS3 showed a statistically significant reduction after treatment (88.2%, p<0.001; pre-treatment = 11.0 ± 0.9; post-treatment = 1.3 ± 0.4, mean ± SEM). The individual OTIS scores, erythema, edema, erosions/ ulcerations, exudate and pruritus showed significant reduction (85.7%, 95.7%, 83.3%, 80.0%, and 89.3%, respectively). Microscopic examination revealed the presence of BF exopolysaccharide in all 8 ear samples when stained with alcian blue. Seven of the 8 dogs (87.5%) showed a reduction in colony growth. ZYMOX-P was effective at 34-fold and 16-fold dilutions on MBIC and BBC, respectively. These findings indicate that ZYMOX-P has efficacy against BF-related infection and is beneficial when used for the management of canine OE.
Go to article

Bibliography

Ayrapetyan M, Williams T, Oliver JD (2018) Relationship between the viable but nonculturable state and antibiotic persister cells. J Bacteriol 200: e00249-18.
Bowen WH (2016) Dental caries - not just holes in teeth! A perspective. Mol Oral Microbiol 31: 228-233.
Bradley CW, Lee FF, Rankin SC, Kalan LR, Horwinski J, Morris DO, Grice EA, Cain CL (2020) The otic micro- biota and mycobiota in a referral population of dogs in eastern USA with otitis externa. Vet Dermatol 31: 225-e49.
Carlsson J, Iwami Y, Yamada T (1983) Hydrogen peroxide excretion by oral streptococci and effect of lactoperoxidase-thiocyanate-hydrogen peroxide. Infect Immun 40: 70-80.
Chan WY, Hickey EE, Hickey, Page SW, Trott DJ, Hill PB (2019) Biofilm production by pathogens associated with canine otitis externa and the antibiofilm activity of ionophores and antimicrobial adjuvants. J Vet Pharmacol Ther 42: 682-692.
Cunha E, Trovão T, Pinheiro A, Nunes T, Santos R, Moreira da Silva J, São Braz B, Tavares L, Veiga AS, Oliveira M (2018) Potential of two delivery systems for nisin topical application to dental plaque biofilms in dogs. BMC Vet Res 14: 375.
Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2: 114-122.
Ding L, Su X, Yokota A (2011) Research progress of VBNC bacteria-a review. Wei Sheng Wu Xue Bao 51: 858-862.
Forssten SD, Björklund M, Ouwehand AC (2010) Streptococcus mutans, caries and simulation models. Nutrients 2: 290-298.
Harms A, Maisonneuve E, Gerdes K (2016) Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354: aaf4268.
Holá V, Růzicka F, Votava. M (2004) Differences in antibiotic sensitivity in biofilm-positive and biofilm-negative strains of Staphylococcus epidermidis isolated from blood cultures. Epidemiol Mikrobiol Imunol 53: 66-69.
Jacobson LS (2002) Diagnosis and medical treatment of otitis externa in the dog and cat. J S Afr Vet Assoc 73: 162-170.
Klancnik A, Guzej B, Jamnik P, Vucković D, Abram M, Mozina SS (2009) Stress response and pathogenic potential of Campylobacter jejuni cells exposed to starvation. Res Microbiol 160: 345-352.
Li H., Wei X, Yang J, Zhang R, Zhang Q, Yang J (2019) The bacteriolytic mechanism of an invertebrate-type lysozyme from mollusk Octo-pus ocellatus. Fish Shellfish Immunol 93: 232-239.
Nuttall T, Bensignor E (2014) A pilot study to develop an objective clinical score for canine otitis externa. Vet Dermatol 25: 530-537.
Otsuka R., Imai S, Murata T, Nomura Y, Okamoto M, Tsumori H, Kakuta E, Hanada N, Momoi Y (2015) Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation. Microbiol Immunol 59: 28-36.
Peters JL, DeMars PL, Collins LM, Stoner JA, Matsumoto H, Komori N, Singh A, Feasley CL, Haddock JA, Levine M (2012) Effects of immunization with natural and recombinant lysine decarboxylase on canine gingivitis development. Vaccine 30: 6706-6712.
Qekwana DN, Oguttu JW, Sithole F, Odoi A (2017) Patterns and predictors of antimicrobial resistance among Staphylococcus spp. from canine clinical cases presented at a veterinary acadeic hospital in South Africa. BMC Vet Res 116.
Schulthess B, Bloemberg GV, Zbinden R EC, Böttger EC, Hombach MJ (2014) Evaluation of the Bruker MALDI Biotyper for identification of Gram-positive rods: deve- lopment of a diagnostic algorithm for the clinical laboratory. J Clin Microbiol 52: 1089-1097.
Stone VN, Xu P (2017) Targeted antimicrobial therapy in the microbiome era. Mol Oral Microbiol 32: 446-454.
Su X, Chen X, Hu J, Shen C, Ding L (2013) Exploring the potential environmental functions of viable but non-culturable bacteria. World J Microbiol Biotechnol 29: 2213-2218.
Tsukatani T, Sakata F, Kuroda R (2020) A rapid and simple measurement method for biofilm formation inhibitory activity using 96-pin micro-titer plate lids. World J Microbiol Biotechnol 36: 189.
Wu MT, Burnham CA, Westblade LF, Dien Bard J, Lawhon SD, Wallace MA, Stanley T, Burd E., Hindler J, Humphries RM (2016) Evaluation of oxacillin and cefoxitin disk and MIC breakpoints for prediction of methicillin resistance in human and veterinary isolates of Staphy-lococcus intermedius Group. J Clin Microbiol 54: 535-542.
Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, Torres-López E, Ramírez-Mondragón R, Hernández-Ramírez JO, Serra-no-Luna J, de la Garza M (2020) Lactoferrin and its derived peptides: an alternative for combating virulence mechanisms developed by patho-gens. Molecules 25: 5763.
Zhu K, Zheng J, Xing J, Chen S, Chen R, Ren L (2022) Mechanical, antibacterial, biocompatible and microleakage evaluation of glass iono-mer cement modified by nanohydroxyapatite/polyhexamethylene biguanide. Dent Mater J 41: 197-208.
Go to article

Authors and Affiliations

M. Fujimura
1

  1. Fujimura Animal Allergy Hospital, Aomatanihigashi 5-10-26, Minou-city, Osaka 562-0022, Japan
Download PDF Download RIS Download Bibtex

Abstract

Mastitis is one of the most crucial diseases of dairy animals. Especially subclinical mastitis (SCM) has negative impacts on of dairy economy in term of reducing milk quality and quantity also premature culling and cost of therapy. Staphylococci are important etiological agents in SCM. The aim of the study was to investigate the biofilm production and antibiotic resistance profiles of Staphylococcus spp. other than S. aureus isolated from milks of Anatolian water buffalo with subclinical mastitis. Twenty-two coagulase negative staphylococci (CNS) identified phenotypically were also identified with PCR as Staphylococcus spp. other than S. aureus. Biofilm productions were investigated both by Congo Red Agar Method and PCR. The antibiotic resistance profiles of the isolates were determined by Disc Diffusion Method and they were antibiotyped. Only three (13.6%) isolates were biofilm positive both phenotypically and genotypically. All isolates except for two were resistant against at least two antibiotics. Multidrug-resistance among the isolates was low (13.6%). Antibiotyping results showed that the similarities among the strains were between 30-100%. Genotyping of the strains revealed that a genetic heterogeneity was found among CNS isolates and their similarities were between 43% and 93%. In conclusion, CNS isolates identified as subclinical mastitis agents in buffaloes showed a high antibiotic resistance profile especially against oxacillin and vancomycin. Further studies should be conducted to investigate new mechanisms and/or genes responsible for antibiotic resistance in buffaloes.
Go to article

Bibliography

Aslantaş Ö, Yılmaz MA, Yılmaz EŞ, Kurekci C (2014) Antimicrobial susceptibility pattern and SCCmec types of methicillin-resistant coagulase-negative staphylococci from subclinical bovine mastitis in Hatay, Turkey. Bull Vet Inst Pulawy 58: 563-566.
Athar M (2006) Preparation and evaluation of inactivated polyvalent vaccines for the control of mastitis in dairy buffaloes. PhD Dissertation Dept. Vet. Clinical Medicine and Surgery, Univ. Agri., Faisalabad, Pakistan.
Ba X, Harrison EM, Edwards GF, Holden MT, Larsen, AR, Petersen A, Skov RL, Peacock SJ, Parkhill J, Paterson GK, Holmes MA (2014) Novel mutations in penicillin-binding protein genes in clinical Staphylococcus aureus isolates that are methicillin resistant on susceptibility testing, but lack the mec gene. J Antimicrob Chemother 69: 594-597.
Becker K, Heilmann C, Peters G (2014) Coagulase-Negative Staphylococci. Clin 246 Microbiol Rev 27: 870-926.
Borghese A, Mazzi M (2005) Buffalo population and strategies in the world. In: Borghese A (ed) Buffalo production and research. Food and Agriculture Organization, Rome, Italy pp 1-41.
Boye K, Bartels MD, Andersen IS, Moller JA, Westh H (2007) A new multiplex PCR for easy screening of methicillin-resistant Staphylococcus aureus SCCmec types I-V. Clin Microbiol Infect 13: 725-727.
Bradley A (2002) Bovine mastitis: an evolving disease. Vet J 164: 116-128.
Chen XP, Li WG, Zheng H, Du HY, Zhang L, Zhang L, Che J, Wu Y, Liu SM, Lu JX (2017) Extreme diversity and multiple SCCmec elements in coagulase-negative Staphylococcus found in the Clinic and Community in Beijing, China. Ann Clin Microbiol Antimicrob 16: 57.
Ciftci A, Findik A, Onuk EE, Savasan S (2009) Detection of methicillin resistance and slime factor production of Staphylococcus aureus in bovine mastitis. Braz J Microbiol 40: 254-261.
Clinical and Laboratory Standards Institute (2019) Performance standards for antimicrobial susceptibility testing, 29th ed. CLSI document M100. Clinical and Laboratory Standards Institute, Wayne, PA. https://community.clsi.org/media/2663/m100ed29_sample.pdf
Dezfulian A, Aslani MM, Oskoui M, Farrokh P, Azimirad M, Dabiri H, Salehian MT, Zali MR (2012) Identification and characterization of a high vancomycin-resistant Staphylococcus aureus harboring VanA gene cluster isolated from diabetic foot ulcer. Iran J Basic Med Sci 15: 803-806 Ergun Y, Aslantas O, Doğruer G, Kirecci E, Sarıbay MK, Ates CT, Ulku A, Demir C (2009) Prevalence and etiology of subclinical mastitis in awassi dairy ewes in southern Turkey. Turk J Vet Anim Sci 33: 477-483.
Findik A, Akan N, Onuk EE, Çakıroğlu D, Ciftci A (2009) Methicillin resistance profile and molecular typing of Staphylococcus aureus strains isolated from noses of the healthy dogs. Kafkas Univ Vet Fak Derg 15: 925-930.
Fitzgerald JR, Hartigan PJ, Meaney WJ, Smyth CJ (2000) Molecular population and virulence factor analysis of Staphylococcus aureus from bovine intramammary infection. J Appl Microbiol 88: 1028-1037.
Gentilini E, Denamiel G, Betancor A, Rebuelto M, Fermepin RM, De Torres RA (2002) Antimicrobial susceptibility of coagulase-negative staphylococci isolated from bovine mastitis in Argentina. J Dairy Sci 85: 1913-1917.
Gulhan T, Boynukara B, Ciftci A, Sogut MU, Findik A (2015) Characterization of Enterococcus faecalis isolates originating from different sources for their virulence factors and genes, antibiotic resistance patterns, genotypes and biofilm production. Iran J Vet Res 16: 261-266.
Hanssen AM, Sollid JU (2006) SCCmecin staphylococci: genes on the move. FEMS Immunol Med Microbiol 46: 8-20.
Harrison EM, Paterson GK, Holden MT, Ba X, Rolo J, Morgan FJ, Pichon B, Kearns A, Zadoks RN, Peacock SJ, Parkhill J, Holmes MA (2014) A novel hybrid SCCmec- -mecC region in Staphylococcus sciuri. J Antimicrob Chemother 69: 911-918.
İnegol E, Türkyılmaz S (2012) Determination of SCCmec types in methicillin resistant staphylococci isolated from cows and farm workers. Ankara Univ Vet Fak Derg 59: 89-93.
Hiramatsu K, Kihara H, Yokota T (1992) Analysis of borderlineresistant strains of methicillin-resistant Staphylococcus aureus using polymerase chain reaction. Microbiol Immunol 36: 445-453.
Morandi S, Brasca M, Lodi R, Brusetti L, Andrighetto C, Lombardi A (2010) Biochemical profiles, restriction fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD) and multilocus variable number tandem repeat analysis (MLVA) for typing Staphylococcus aureus isolated from dairy products. Res Vet Sci 88: 427-435.
Özenç E, Vural MR, Seker E, Uçar M (2008) An evaluation of subclinical mastitis during lactation in Anatolian buffaloes. Turk J Vet Anim Sci 32: 359-368.
Palazzo IC, Araujo ML, Darini AL (2005) First Report of Vancomycin-Resistant Staphylococci Isolated from Healthy Carriers in Brazil. J Clin Microbiol 43: 179-185.
Pamuk Ş, Şeker E, Yıldırım Y (2010) Antibiotic resistance of coagulase negative Staphylococci isolated from buffalo milk and some milk products. Kocatepe Vet J 3: 7-12.
Partridge SR, Kwong SM, Firth N, Jensen SO (2018) Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin Microbiol Rev 31: e00088-17.
Petinaki E, Arvaniti A, Bartzavali C, Dimitracopoulos G, Spiliopoulou I (2002) Presence of mec Genes and Overproduction of Beta-Lactamase in the Expression of Low-Level Methicillin Resistance among Staphylococci. Chemotherapy 48: 174-181.
Pyörala S, Taponen S (2009) Coagulase-negative staphylococci-Emerging mastitis pathogens. Vet Microbiol 134: 3-8.
Qu Y, Zhao H, Nobrega DB, Cobo ER, Han B, Zhao Z, Li S, Li M, Barkema HW, Gao J (2018) Molecular epidemiology and distribution of antimicrobial resistance genes of Staphylococcus species isolated from Chinese dairy cows with clinical mastitis. J Dairy Sci 102: 1571-1583.
Raza A, Muhammad G, Sharif S, Atta A (2013) Biofilm producing Staphylococcus aureus and bovine mastitis: a review. Mol Microbiol Res 33: 1-8.
Reinoso E, Bettera S, Ferigerio C, DiRenzo M, Calozari A, Bongi C (2004) RAPD-PCR analysis of Staphylococcus aureus strains isolated from bovine and human hosts. Microbiol Res 159: 245-255.
Ruppe E, Barbier F, Mesli Y, Maiga A, Cojocaru R, Benkhalfat M, Benchouk S, Hassaine H, Maiga I, Diallo A, Koumare AK, Ouattara K, Soumare S, Dufourcq JB, Nareth C, Sarthou JL, Andremont A, Ruimy R (2009) Diversity of Staphylococcal cassette chromosome mec structures in methicillin- resistant Staphylococcus epidermidis and Staphylococcus haemolyticus strains among outpatients from four countries. Antimicrob Agents Chemother 53: 442-449.
Saber H, Jasni AS, Jamaluddin TZ, Ibrahim R (2017) A review of staphylococcal cassette chromosome mec (SCCmec) types in coagulase-negative staphylococci (CoNS) species. Malays J Med Sci 24: 7-18
Sawant AA, Gillespie BE, Oliver SP (2009) Antimicrobial susceptibility of coagulase-negative Staphylococcus species isolated from bovine milk. Vet Microbiol 134: 73-81.
Schalm OW, Carroll EJ, Jain NC (1971) Bovine mastitis. Bovine mastitis. LeaFebiger, Philadelphia USA. Siebert WT, Moreland N, Williams TW (1979) Synergy of vancomycin plus cefazolin or cephalothin against methicillin-resistance Staphylococcus epidermidis. J Infect Dis 139: 452-457.
Sudhan NA, Sharma N (2010) Mastitis: An important production disease of dairy animals. Smvs’ Dairy Year Book pp 72-88. Sujatha S, Praharaj I (2012) Glycopeptide resistance in Gram-positive cocci: a review. Interdiscip Perspect Infect Dis 2012: 781679
Taponen S, Pyörälä S (2009) Coagulase-negative staphylococci as cause of bovine mastitis-Not so different from Staphylococcus aureus? Vet Microbiol 134: 29-36.
Taponen S, Simojoki H, Haveri M, Larsen HD, Pyörälä S (2006) Clinical characteristics and persistence of bovine mastitis caused by different species of coagulase-negative staphylococci identified with API or AFLP. Vet Microbiol 115: 199-207.
Thorberg B (2008) Coagulase-Negative Staphylococci in Bovine Sub-Clinical Mastitis. Licentiate Thesis Department of Biomedical Sciences and Veterinary Public Health Swedish University of Agricultural Sciences, Report no. 2.
Turutoğlu H, Ercelik S, Ozturk D (2006) Antibiotic resistance of Staphylococcus aureus and coagulase-negative staphylococci isolated from bovine mastitis. Bull Vet Ins Pulawy 50: 41-45.
Versalovic J, Lupski JR (2002) Molecular detection and genotyping of pathogens: more accurate and rapid answers. Trends Microbiol 10: S15-21. Vurucu N, Savaşan S, Sezener MG (2019) Determination of Virulence Genes and Genetic Similarities of Mastitic Milk Originated Escherichia coli Isolates. J Agri Life Sci 2: 31-35.
Wielders CL, Vriens MR, Brisse S, De Graaf-Miltenburg LA, Troelstra A, Fleer A, Schmitz FJ, Verhoef J, Fluit AC (2001) Evidence for in-vivo transfer of mecA DNA between strains of Staphylococcus aureus. Lancet 357: 1674-1675.
Xu Z, Shah HN, Misra R, Chen J, Zhang W, Liu Y, Cutler RR, Mkrtchyan HV (2018) The prevalence, antibiotic resistance and mecA characterization of coagulase negative staphylococci recovered from non-healthcare settings in London, UK. Antimicrob Resist Infect Control 7: 73.
Yazdani R, Oshaghi M, Havayi A, Pishva E, Salehi R, Sadeghizadeh M, Foroohesh H (2006) Detection of icaAD gene and biofilm formation in Staphylococcus aureus isolates from wound infections. Iranian J Publ Health 35: 25-28.
Zare S, Derakhshandeh A, Haghkhah M, Naziri Z, Broujeni AM (2019) Molecular typing of Staphylococcus aureus from different sources by RAPD-PCR analysis. Heliyon 5: e02231.
Go to article

Authors and Affiliations

H. Gurler
1
A. Findik
2
M.G. Sezener
2

  1. Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey
  2. Department of Microbiology, Faculty of Veterinary Medicine, University of Ondokuz Mayis, Samsun, Turkey
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a comparative study on the effects of the in-situ surface modifications performed on “H” type microfluidic systems obtained via additive manufacturing. The microsystem was printed using a polylactic acid filament on an Ender-5 Pro printer. The surface modification of the main channel was done using chloroform by two different methods: vapor smoothing and flushing. The obtained surface roughness was studied using an optical microscope and the ImageJ software, as well as scanning electron microscopy. The effect of the channel surface treatment upon the characteristics of the fluid flow was assessed. The microfluidic systems were used for the dynamic study of biofilm growth of Candida albicans (ATCC 10231). The influence of the surface roughness of the main channel on the formation and growth of the biofilm was studied using quantitative methods, scanning electron microscopy imaging as well as optical coherence tomography.
Go to article

Authors and Affiliations

A. Csapai
1
ORCID: ORCID
D.-A. Țoc
2
ORCID: ORCID
V. Pașcalău
1
ORCID: ORCID
V. Toșa
1
ORCID: ORCID
D. Opruța
3
ORCID: ORCID
F. Popa
1
ORCID: ORCID
C. Popa
ORCID: ORCID

  1. Materials Science and Engineering Department, Technical University of Cluj-Napoca, 103-105 Muncii Ave., 400641 Cluj-Napoca, Romania
  2. Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400000 Cluj-Napoca, Romania
  3. Thermal Engineering Department, Technical University of Cluj-Napoca, 103-105 Muncii Ave., 400641 Cluj-Napoca, Romania
Download PDF Download RIS Download Bibtex

Abstract

Listeria monocytogenes is a ubiquitous microorganism that is isolated from a variety of sources such as soil, water, decaying vegetation, sewage, animal feeds, silage, farm environments and food-processing environments. This study aimed to determine the prevalence, serogroups, biofilm formation, virulence factor genes, and genetic relationships of L. monocytogenes strains isolated from beef meat and meat contact surfaces obtained from a slaughterhouse in Burdur, Turkey. In this study, a total of 179 beef meat and meat contact surface samples were analyzed for the presence of L. monocytogenes by polymerase chain reaction (PCR). Out of a total of 179 beef meat and meat contact surface samples, 83 (46.37%) were found to be contaminated with L. monocytogenes, with the highest incidence (53.01%) occurring in beef meat. In the present study, most of the isolated strains belonged to serogroups IIB and IVB (lineage I). The L. monocytogenes strain also contained monoA-B, prfA, plcA, plcB, mpl, hlyA, actA, gtcA, dltA, Fri, flaA, InlA, InlC, InlJ, and iap genes. Biofilm formation was not determined in the tested samples at pH 5.5 and different temperatures (4°C, 10°C, 25°C, and 37°C). However, strong biofilm formation was observed in 6.45% (2/31) of the strains at pH 7.0 after 48 h incubation at 37°C, and in 3.22% (1/31) of the strains at pH 7.0 after 48 h incubation at 4°C and 10°C. Pulsed-field gel electrophoresis (PFGE) results showed that L. monocytogenes isolates were clonally related, and cross-contamination was present. In addition, PFGE results also revealed that AscI had more distinguishing power than the ApaI restriction enzyme. These results indicate that L. monocytogenes detected from meat and meat contact surfaces in the slaughterhouse pose a potential risk to public health.
Go to article

Bibliography

1. Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P (2002) Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol 43: 1-14.
2. Agostinho Davanzo EF, Dos Santos RL, Castro VH, Palma JM, Pribul BR, Dallago BS, Fuga B, Medeiros M, Titze de Almeida SS, da Costa HM, Rodrigues DD, Lincopan N, Perecmanis S, Santana AP (2021) Molecular characterization of Salmonella spp. and Listeria monocytogenes strains from biofilms in cattle and poultry slaughterhouses located in the federal District and State of Goia´s, Brazil. PLoS One 16: e0259687.
3. Andrade JC, João AL, Alonso CS, Barreto AS, Henriques AR (2020) Genetic subtyping, biofilm-forming ability and biocide suscepti-bility of Listeria monocytogenes strains isolated from a ready-to-eat food industry. Antibiotics (Basel) 9: 416.
4. Arslan S, Baytur S (2019) Prevalence and antimicrobial resistance of Listeria species and subtyping and virulence factors of Listeria monocytogenes from retail meat. J Food Saf 39: e12578.
5. Ayaz ND, Cufaoglu G (2016) Listeria monocytogenes as a foodborne pathogen: Biocontrol in foods using lytic bacteriophages. J Clin Microbiol Biochem Technol 2: 035-039.
6. Bubert A, Köhler S, Goebel W (1992) The homologous and heterologous regions within the iap gene allow genus- and species-specific identification of Listeria spp. by polymerase chain reaction. Appl Environ Microbiol 58: 2625-2632.
7. Bubert A, Riebe J, Schnitzler N, Schönberg A, Goebel W, Schubert P (1997) Isolation of catalase-negative Listeria monocytogenes strains from listeriosis patients and their rapid ıdentification by anti-p60 antibodies and/or PCR. J Clin Microbiol 35: 179-183.
8. Bubert A, Sokolovic Z, Chun SK, Papatheodorou L, Simm A, Goebel W (1999) Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol Gen Genet 261: 323-336.
9. Boukili M, Filali FR, Lafkih N, Bouymajane A, Sefiani M, Moumni M (2020) Prevalence, characterization and antimicrobial resistance of Listeria monocytogenes isolated from beef meat in Meknes city, Morocco. Germs 10: 74-80.
10. Çadırcı Ö, Gücükoğlu A, Terzi GG, Uyanık T, Alişarlı M (2018) The existence of Listeria monocytogenes in a cattle slaughterhouse and identification of serotypes by mPCR. Ankara Univ Vet Fak Derg 65: 305-311.
11. CDC (2017) Standard Operating Procedure for PulseNet PFGE of Listeria monocytogenes. https://www.cdc.gov/pulsenet/pdf/listeria-pfge-protocol-508c.pdf
12. Chavant P, Martinie B, Meylheuc T, Bellon-Fontaine MN, Hebraud M (2002) Listeria monocytogenes LO28: surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl Environ Microbiol 68: 728-737.
13. Chen M, Cheng J, Zhang J, Chen Y, Zeng H, Xue L, Lei T, Pang R, Wu S, Wu H, Zhang S, Wei X, Zhang Y, Ding Y, Wu Q (2019) Isolation, potential virulence, and population diversity of Listeria monocytogenes from meat and meat products in China. Front Microbiol 10: 946.
14. Cherifi T, Arsenault J, Pagotto F, Quessy S, Côté JC, Neira K, Fournaise S, Bekal S, Fravalo P (2020) Distribution, diversity and per-sistence of Listeria monocytogenes in swine slaughterhouses and their association with food and human listeriosis strains. PLoS One 15: e0236807.
15. Coban A, Pennone V, Sudagidan M, Molva C, Jordan K, Aydin A (2019) Prevalence, virulence characterization, and genetic related-ness of Listeria monocytogenes isolated from chicken retail points and poultry slaughterhouses in Turkey. Braz J Microbiol 50: 1063-1073.
16. Costa M, Pracca G, Sucari A, Galli L, Ibargoyen J, Gentiluomo J, Brusa V, Zugazua MM, Figueroa Y, Londero A, Roge A, Silva H, Der Ploeg CV, Signorini M, Oteiza JM, Leotta GA (2020) Comprehensive evaluation and implementation of improvement actions in bovine abattoirs to reduce pathogens exposure. Prev Vet Med 176: 104933.
17. Demaître N, Van Damme I, De Zutter L, Geeraerd AH, Rasschaert G, De Reu K (2020) Occurrence, distribution and diversity of Lis-teria monocytogenes contamination on beef and pig carcasses after slaughter. Meat Sci 169: 108177.
18. Doumith M, Buchrieser C, Glaser P, Jacquet C, Martin P (2004) Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. J Clin Microbiol 42: 3819-3822.
19. Dussurget O, Dumas E, Archambaud C, Chafsey I, Chambon C, Hébraud M, Cossart P (2005) Listeria monocytogenes ferritin protects against multiple stresses and is required for virulence. FEMS Microbiol Lett 250: 253-261.
20. Furrer B, Candrian U, Hoefelein C, Luethy J (1991) Detection and identification of Listeria monocytogenes in cooked sausage products and in milk by in vitro amplification of haemolysin gene fragments. J Appl Bacteriol 70: 372-379.
21. Graves LM, Hunter SB, Ong AR, Schoonmaker-Bopp D, Hise K, Kornstein L, DeWitt WE, Hayes PS, Dunne E, Mead P, Swaminathan B (2005) Microbiological aspects of the investigation that traced the 1998 outbreak of listeriosis in the United States to contaminated hot dogs and establishment of molecular subtyping-based surveillance for Listeria monocytogenes in the PulseNet Network. J Clin Microbiol 43: 2350-2355.
22. Hellström S (2011) Contamination routes and control of Listeria monocytogenes in food production. Academic dissertation. University of Helsinki, Faculty of Veterinary Medicine, Helsinki, Finland. SBN 978-952-10-7109-6 (PDF)
23. Hitchins AD, Jinneman K, Chen Y (2022) Chapter 10: Detection of Listeria monocytogenes in foods and environmental samples, and enumeration of Listeria monocytogenes in foods. In: Food and Drug Administraiton Bacteriological Analytical Manual (BAM), Food and Drug Administraiton. https://www.fda.gov/food/laboratory-methods-food/bamchapter-10-detection-listeria-monocytogenes-foods-andenvironmental-samples-and-enumeration
24. Iglesias MA, Kroning IS, Decol LT, de Melo Franco BD, da Silva WP (2017) Occurrence and phenotypic and molecular characteriza-tion of Listeria monocytogenes and Salmonella spp. in slaughterhouses in southern Brazil. Food Res Int 100: 96-101.
25. ISO (2017) International Organization for Standardization, EN ISO 11290-1:2017. Microbiology of the food chainHorizontal method for the detection and enumeration of Listeria monocytogenes and of Listeria spp. Part 1: Detection method. https://www.iso.org/obp/ui/#iso:std:iso: 11290:-1:ed-2:v1:en
26. Jang YS, Moon JS, Kang HJ, Bae D, Seo KH (2021) Prevalence, characterization, and antimicrobial susceptibility of Listeria monocytogenes from raw beef and slaughterhouse environments in Korea. Foodborne Pathog Dis 18: 419-425.
27. Jaradat ZW, Schutze GE, Bhunia AK (2002) Genetic homogeneity among Listeria monocytogenes strains from infected patients and meat products from two geographic locations determined by phenotyping, ribotyping and PCR analysis of virulence genes. Int J Food Microbiol 76: 1-10.
28. Jennison AV, Masson JJ, Fang NX, Graham RM, Bradbury MI, Fegan N, Gobius KS, Graham TM, Guglielmino CJ, Brown JL, Fox EM (2017) Analysis of the Listeria monocytogenes population structure among isolates from 1931 to 2015 in Australia. Front Microbiol 8: 603.
29. Kayode AJ, Igbinosa EO, Okoh AI (2019) Overview of listeriosis in the Southern African Hemisphere-Review. J Food Saf 40: e12732.
30. Kyoui D, Takahashi H, Miya S, Kuda T, Kimura B (2014) Comparison of the major virulence-related genes of Listeria monocytogenes in Internalin A truncated strain 36-25-1 and a clinical wild-type strain. BMC Microbiol 14: 15.
31. Leimeister-Wachter M, Domann E, Chakraborty T (1991) Detection of a gene encoding a phosphatidylinositolspecific phospholipase C that is co-ordinately expressed with listeriolysin in Listeria monocytogenes. Mol Microbiol 5: 361-366.
32. Li X, Shi X, Song Y, Yao S, Li K, Shi B, Sun J, Liu Z, Zhao W, Zhao C, Wang J (2022) Genetic diversity, antibiotic resistance, and virulence profiles of Listeria monocytogenes from retail meat and meat processing. Food Res Int 162: 112040.
33. Liu D, Ainsworth AJ, Austin FW, Lawrence ML (2004) Use of PCR primers derived from a putative transcriptional regulator gene for species-specific determination of Listeria monocytogenes. Int J Food Microbiol 91: 297-304.
34. Liu D, Lawrence ML, Ainsworth AJ, Austin FW (2008) Genotypic identification. In: Liu D (ed) Handbook of Listeria monocytogenes, 1st ed., Boca Raton: CRC Press, Taylor & Francis Group, pp 169-202.
35. Liu D, Lawrence ML, Austin FW, Ainsworth AJ (2007) A multiplex PCR for species- and virulence-specific determination of Listeria monocytogenes. J Microbiol Methods 71: 133-140.
36. Mazaheri T, Ripolles-Avila C, Hascoët AS, Rodríguez-Jerez JJ (2020) Effect of an enzymatic treatment on the removal of mature Listeria monocytogenes biofilms: A quantitative and qualitative study. Food Control 114: 107266.
37. Neves E, Lourenco A, Silva AC, Coutinho R, Brito L (2008) Pulsed-field gel electrophoresis (PFGE) analysis of Listeria monocytogenes isolates from different sources and geographical origins and representative of the twelve serovars. Syst Appl Microbiol 31: 387-392.
38. Nishibori T, Cooray K, Xiong H, Kawamura I, Fujita M, Mitsuyama M (1995) Correlation between the presence of virulence-associated genes as determined by PCR and actual virulence to mice in various strains of Listeria spp. Microbiol Immunol 39: 343-349.
39. Oevermann A, Zurbriggen, A Vandevelde M (2010) Rhombencephalitis caused by Listeria monocytogenes in humans and ruminants: a zoonosis on the rise? Interdiscip Perspect Infect Dis 2010: 632513.
40. Oh H, Kim S, Lee S, Lee H, Ha J, Lee J, Choi Y, Choi KH, Yoon Y (2018) Prevalence, serotype diversity, genotype and antibiotic resistance of Listeria monocytogenes isolated from carcasses and human in Korea. Korean J Food Sci Anim Resour 38: 851-865.
41. Olaimat AN, Al-Holy MA, Shahbaz HM, Al-Nabulsi AA, Abu Ghoush MH, Osaili TM, Ayyash MM, Holley RA (2018) Emergence of antibiotic resistance in Listeria monocytogenes isolated from food products: a comprehensive review. Compr Rev Food Sci Food Saf 17: 1277-1292.
42. Orsi RH, den Bakker HC, Wiedmann M (2011) Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int J Med Microbiol 301: 79-96.
43. Orsi RH, Wiedmann M (2016) Characteristics and distribution of Listeria spp., including Listeria species newly described since 2009. Appl Microbiol Biotechnol 100: 5273-5287.
44. Papatzimos G, Kotzamanidis C, Kyritsi M, Malissiova E, Economou V, Giantzi V, Zdragas A, Hadjichristodoulou C, Sergelidis D (2022) Prevalence and characteristics of Listeria monocytogenes in meat, meat products, food handlers and the environment of the meat processing and the retail facilities of a company in Northern Greece. Lett Appl Microbiol 74: 367-376.
45. Penesyan A, Paulsen IT, Kjelleberg S, Gillings MR (2021) Three faces of biofilms: a microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. NPJ Biofilms and Microbiomes, 7: 80.
46. Poimenidou SV, Dalmasso M, Papadimitriou K, Fox EM, Skandamis PN, Jordan K (2018) Virulence gene sequencing highlights similarities and differences in sequences in Listeria monocytogenes Serotype 1/2a and 4b strains of clinical and food origin from 3 different geographic locations. Front Microbiol 9: 1103.
47. Promadej N, Fiedler F, Cossart P, Dramsi S, Kathariou S (1999) Cell wall teichoic acid glycosylation in Listeria monocytogenes serotype 4b requires gtcA, a novel, serogroup-specific gene. J Bacteriol 181: 418-425.
48. Sahin S, Mogulkoç MN, Kalın R (2020) Prevalence and serotype distribution of Listeria monocytogenes isolated from retail raw meats. J Fac Vet Med Erciyes Univ 17: 22-27.
49. Slama RB, Miladi H, Chaieb K, Bakhrouf A (2013) Survival of Listeria monocytogenes cells and the effect of extended frozen storage (-20°C) on the expression of its virulence gene. Appl Biochem Biotechnol 170: 1174-1183.
50. Soni DK, Singh M, Singh DV, Dubey SK (2014) Virulence and genotypic characterization of Listeria monocytogenes isolated from vegetable and soil samples. BMC Microbiol 14: 241.
51. Sudagidan M, Cavusoglu C, Bacakoglu F (2008) Investigation of the virulence genes in methicillin-resistant Staphylococcus aureus strains isolated from biomaterial surfaces. Mikrobiyol Bul 42: 29-39.
52. Teixeira LA, Carvalho FT, Vallim DC, Pereira RC, Neto AC, Vieira BS, Carvalho RC, Figueiredo EE (2020) Listeria monocytogenes in export-approved beef from Mato Grosso, Brazil: prevalence, molecular characterization and resistance to antibiotics and disinfectants. Microorganisms 8: 18.
53. Vasquez-Boland JA, Kocks C, Dramsi S, Ohayon H, Geoffroy C, Mengaud J, Cossart P (1992) Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect Immun 60: 219-230.
54. Yan H, Neogi SB, Mo Z, Guan W, Shen Z, Zhang S, Li L, Yamasaki S, Shi L, Zhong N (2010) Prevalence and characterization of an-timicrobial resistance of foodborne Listeria monocytogenes isolates in Hebei province of Northern China, 2005-2007. Int J Food Mi-crobiol 144: 310-316.
55. Yucel N, Citak S, Onder M (2005) Prevalence and antibiotic resistance of Listeria species in meat products in Ankara, Turkey. Food Microbiol 22: 241-245.
56. Zhang H, Wang J, Chang Z, Liu X, Chen W, Yu Y, Wang X, Dong Q, Ye Y, Zhang X (2021) Listeria monocytogenes contamination characteristics in two ready-to-eat meat plants from 2019 to 2020 in Shanghai. Front Microbiol 12: 729114.
Go to article

Authors and Affiliations

F. Tasci
1
M. Sudagidan
2
O. Yavuz
2
A. Soyucok
3
A. Aydin
4

  1. Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, 15030, Istiklal Campus, Burdur, Turkey
  2. Scientific and Technology Application and Research Center, Burdur Mehmet Akif Ersoy University, Burdur, 15030, Istiklal Campus, Burdur, Turkey
  3. Department of Food Processing, Food Agriculture and Livestock Vocational School, Burdur Mehmet Akif Ersoy University, 15030, Istiklal Campus, Burdur, Turkey
  4. Department of Food Hygiene and Technology, Faculty of Veterinary Medicine,Istanbul University-Cerrahpasa, 34320, Avcilar, Istanbul, Turkey
Download PDF Download RIS Download Bibtex

Abstract

In this study, a pilot-scale subsurface wastewater infiltration system (SWIS) was deployed to study landscape water treatment. The goal of the study was to investigate the effects of hydraulic loading on pollutant removal and the spatial distribution of biofilm properties in SWIS. Results showed that the efficiencies of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) removal degraded as hydraulic loading increased. Furthermore, quantities of the biofilm properties parameter s increased with the hydraulic loading. Polysaccharide and protein levels ranged from 560 to 1110 μg/g filler and 60 to 190 μg/g filler, respectively, at a hydraulic loading of 0.2 m/d. At a hydraulic loading of 0.4 m/d, the quantities of polysaccharide and protein ranged from 1200 to 3300 μg/g filler and 80 to 290 μg/g filler, respectively. Biofilm intensity and biofilm activity per unit weight decreased with the increase in hydraulic loading.

Go to article

Authors and Affiliations

Liangbo Zhang
Jian Yang
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to determine the impact of selected factors on the reduction of organic pollutants, expressed in BOD5 and CODCr, in wastewater treated in a laboratory scale model of moving bed biofilm reactor (MBBR). The factors included in the experiment: the degree of filling the fluidized bed with biomass carriers, hydraulic load, and aeration intensity. The tested model of the bioreactor consisted of five independent chambers with diameter D = 0.14 m and height H = 2.0 m, which were filled with biomass carriers at 0%, 20%, 40%, 60%, 70% of their active volume. During the test period, hydraulic loads at the level of Qh1 = 0.073 m3·m-2·h-1 and Qh2 = 0.036 m3·m-2·h-1 were applied, which ensured one-day and two-day sewage retention, respectively.The said reactors were subjected to constant aeration at P1 = 3.0 dm3·min-1 and P2 = 5.0 dm3·min-1. The highest efficiency of the reduction of the analysed indicators was demonstrated by reactors filled with carriers in the degree of 40–60%. Based on the statistical analyses (the analyses of the ANOVA variations and the Kruskal-Wallis test) carried out, it was found that the studied factors significantly modified the mutual interaction in the process of reducing BOD5 in treated wastewater of the reactors tested. The significance of the impact of the discussed factors on the values of the studied indicators in treated wastewater depends on mutual interactions between the investigated factors.

Go to article

Authors and Affiliations

Paulina Śliz
Piotr Bugajski
Karolina Kurek
Download PDF Download RIS Download Bibtex

Abstract

Filtration through biologically active carbon (BAC) filters is an effective method of organic matter removal during drinking water treatment. In this study, the microbial community in the initial period of filters’ operation, as well as its role in the organic matter removal were investigated. Research was carried out in a pilot scale on two BAC filters (Filter 1 and Filter 2) which were distinguished by the type of inflowing water. It was observed that the number of heterotrophic plate count bacteria and total microbial activity were significantly higher in water samples collected from Filter 2, which received an additional load of organic matter and microorganisms. Despite the differences in the values of chemical and microbiological parameters of inflowing water, the composition of the microbiome in both filters was similar. The predominant taxon was a bacterium related to Spongiibacter sp. (Gammaproteobacteria) (>50% of relative abundance). In both filters, the efficiency of organic matter removal was at the same level, and the composition and relative frequency of predicted functional pathways related to metabolism determined using PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States Software) at level 3 of KEGG (Kyoto Encyclopedia of Genes and Genomes) Orthology – were also similar. The study demonstrated that a 40-day period of filter operation after filling with virgin granular activated carbon, was sufficient to initiate biofilm development. It was proved, that during the initial stage of filter operation, microorganisms capable of biodegradation of various organic compounds, including xenobiotics like nitrotoluene, colonized the filters
Go to article

Bibliography

  1. APHA (2017). Standard Methods for the Examination of Water and Wastewater, (23st ed.) American Public Health Association, Washington DC.
  2. Chan, S., Pullerits, K., Keucken, A., Persson, K.M., Paul, C.J. & Rådström, P. (2019). Bacterial release from pipe biofilm in a full-scale drinking water distribution system, NPJ Biofilms Microbiomes, 5, 9. DOI:10.1038/s41522-019-0082-9
  3. Choi, Y.C., Li, X., Raskin, L. & Morgenroth, E. (2008). Chemisorption of oxygen onto activated carbon can enhance the stability of biological perchlorate reduction in fixed bed biofilm reactors, Water Research, 42, pp. 3425–3434. DOI:10.1016/j.watres.2008.05.004
  4. Dong, S., Liu, L., Zhang, Y. & Jiang, F. (2019). Occurrence and succession of bacterial community in O3/BAC process of drinking water treatment, International Journal of Environmental Research and Public Health, 16, 3112. DOI:10.3390/ijerph16173112
  5. Douglas, G.M., Maffei, V.J., Zaneveld, J.R., Yurgel, S.N., Brown, J.R., Taylor, C.M., Huttenhower, C. & Langille, M.G.I. (2020). PICRUSt2 for prediction of metagenome functions, Nature Biotechnology, 38, pp. 685–688. DOI:10.1038/s41587-020-0548-6
  6. Edgar, R.C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nature Methods, 10, pp. 996–998. DOI:10.1038/nmeth.2604
  7. Garrity, G.M. (Ed.) 2005. Bergey’s Manual of Systematic Bacteriology. Vol. 2 The Proteobacteria, part C, The Alpha- Beta-, Delta- and Epsilonproteobacteria, Springer, New York, pp. 1-1388. DOI:10.1007/0-387-29298-5
  8. Guo, X., Xie, C., Wang, L., Li, Q. & Wang, Y. (2019). Biodegradation of persistent environmental pollutants by Arthrobacter sp., Environmental Science and Pollution Research, 26, pp. 8429–8443. DOI:10.1007/s11356-019-04358-0
  9. Hayward, C., Ross, K.E., Brown, M.H., Bentham, R. & Whiley, H. (2022) The presence of opportunistic premise plumbing pathogens in residential buildings: a literature review, Water, 14, 1129. DOI:10.3390/w14071129
  10. Heberle, H., Meirelles, G.V., da Silva, F.R., Telles, G.P. & Minghim, R. (2015). InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams, BMC Bioinformatics, 16, 169. DOI:10.1186/s12859-015-0611-3
  11. Holc, D., Pruss, A., Michałkiewicz, M. & Cybulski, Z. (2016). Effectiveness of Organic Compounds Removing During Water Treatment by Filtration Through a Biologically Active Carbon Filter with the Identification of Microorganisms, Annual Set The Environment Protection, 18, pp. 235–246 (in Polish), available on: http://ros.edu.pl/images/roczniki/2016/No2/17_ROS_N2_V18_R2016.pdf
  12. Holc, D., Mądrecka-Witkowska, B., Komorowska-Kaufman, M., Szeląg-Wasielewska, E., Pruss, A. & Cybulski, Z. (2021). The application of different methods for microbial development assessment in pilot scale drinking water biofilters, Archives of Environmental Protection, 47, 3, pp. 37-49. DOI:10.24425/aep.2021.138462
  13. Holc, D., Pruss, A., Komorowska-Kaufman, M., Mądrecka, B. & Cybulski, Z. (2019). The sorption of organic compounds from water during technological start-up of carbon filters, E3S Web Conferences, 100, 00027. DOI:10.1051/e3sconf/201910000027
  14. IARC, Monographs on the Evaluation of Carcinogenic Risks to Humans. (2012). Some chemicals present in industrial and consumer products, Food And Drinking-Water, 101, 9-549.
  15. Jean, W.D., Yeh, Y.T., Huang, S.P., Chen, J.S. & Shieh, W.Y. (2016). Spongiibacter taiwanensis sp. nov., a marine bacterium isolated from aged seawater, International Journal of Systematic and Evolutionary Microbiology, 66, pp. 4094–4098. DOI:10.1099/ijsem.0.001316
  16. Jin, L., Ko, S.R., Ahn, C.Y., Lee, H.G. & Oh, H.M. (2016). Rhizobacter profundi sp. nov., isolated from freshwater sediment, International Journal of Systematic and Evolutionary Microbiology, 66, pp. 1926-1931. DOI:10.1099/ijsem.0.000962
  17. Kaarela, O.E., Harkki, H.A., Palmroth, M.R.T. & Tuhkanen, T.A. (2015). Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures, Environmental Technology, 36, pp. 681-692. DOI:10.1080/09593330.2014.958542
  18. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. (2021). KEGG: Integrating viruses and cellular organisms, Nucleic Acids Research, 49, D545–D551. DOI:10.1093/nar/gkaa970
  19. Kennedy, A.M., Reinert, A.M., Knappe, D.R.U., Ferrer, I. & Summers R.S. (2015). Full- and pilot-scale GAC adsorption of organic micropollutants, Water Research, 68, pp. 238-248. DOI:10.1016/j.watres.2014.10.010
  20. Khan M.F., Jamal A., Rosy P. J., Alguno A.C., Ismail M., Khan I., Ismail, A. & Zahid, M. (2022). Eco-friendly elimination of organic pollutants from water using graphene oxide assimilated magnetic nanoparticles adsorbent, Inorganic Chemistry Communications, 139, 109422. DOI:10.1016/j.inoche.2022.109422
  21. Korotta-Gamage, S.M. & Sathasivan, A. (2017). A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process, Chemosphere, 167, pp. 120-138. DOI:10.1016/j.chemosphere.2016.09.097
  22. Langille, M.G.I., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Vega Thurber, R.L., Knight, R., Beiko, R.G. & Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences, Nature Biotechnology, 31, pp. 814–821. DOI:10.1038/nbt.2676
  23. LaPara, T.M., Hope Wilkinson, K., Strait, J.M., Hozalski, R.M., Sadowksy, M.J &, Hamilton, M.J. (2015). The Bacterial Communities of Full-Scale Biologically Active, Granular Activated Carbon Filters Are Stable and Diverse and Potentially Contain Novel Ammonia-Oxidizing Microorganisms, Applied and Environmental Microbiology, 81, pp. 6864-6872. DOI:10.1128/AEM.01692-15
  24. Li, C., Ling, F., Zhang, M., Liu, W.T., Li, Y. & Liu, W. (2017). Characterization of bacterial community dynamics in a full-scale drinking water treatment plant, Journal of Environmental Sciences, 51, pp. 21-30. DOI:10.1016/j.jes.2016.05.042
  25. Liao, X., Chen, C., Chang, C.-H., Wang, Z., Zhang, X. & Xie, S. (2012). Heterogeneity of microbial community structures inside the up-flow biological activated carbon (BAC) filters for the treatment of drinking water. Biotechnology and Bioprocess Engineering, 17, pp. 881–886. DOI:10.1007/s12257-012-0127-x
  26. Liao, X., Chen, C., Wang, Z., Chang, C.-H., Zhang, X. & Xie, S. (2015). Bacterial community change through drinking water treatment processes, International Journal of Environmental Science and Technology, 12, pp. 1867-1874. DOI:10.1007/s13762-014-0540-0
  27. Liao, X., Chen, C., Wang, Z., Wan, R., Chang, C.-H. & Zhang, X. (2013). Changes of biomass and bacterial communities in biological activated carbon filters for drinking water treatment. Process Biochemistry, 48, pp. 312-316. DOI:10.1016/j.procbio.2012.12.016
  28. Liu, G., Zhang, Y., van der Mark, E., Magic-Knezev, A., Pinto, A., van den Bogert, B., Liu, W., van der Meer, W. & Medema, G. (2018). Assessing the origin of bacteria in tap water and distribution system in an unchlorinated drinking water system by SourceTracker using microbial community fingerprints, Water Research, 138, pp. 86-96. DOI:10.1016/j.watres.2018.03.043
  29. Ma, B., LaPara, T.M. & Hozalski, R.M. (2020). Microbiome of Drinking Water Biofilters is Influenced by Environmental Factors and Engineering Decisions but has Little Influence on the Microbiome of the Filtrate, Environmental Science & Technology, 54, pp. 11526-11535. DOI:10.1021/acs.est.0c01730
  30. Makowska, N., Philips, A., Dabert, A., Nowis, K., Trzebny, A., Koczura, R. & Mokracka, J. (2020). Metagenomic analysis of β-lactamase and carbapenemase genes in the wastewater resistome, Water Research, 170, 115277. DOI:10.1016/j.watres.2019.115277
  31. Matilainen, A., Vieno N., & Tuhkanen, T. (2006). Efficiency of the activated carbon filtration in the natural organic matter removal, Environment International, 32, pp. 324-331. DOI:10.1016/j.envint.2005.06.003
  32. Mądrecka, B., Komorowska-Kaufman, M., Pruss, A. & Holc, D. (2018). Metabolic activity tests in organic matter biodegradation studies in biologically active carbon filter beds, in: Water Supply and Wastewater Disposal, Sobczuk, H. & Kowalska, B. (Eds.), Lublin University of Technology, Lublin, pp.163-177
  33. Magic-Knezev, A., Wullings, B. & Van der Kooij, D. (2009). Polaromonas and Hydrogenophaga species are the predominant bacteria cultured from granular activated carbon filters in water treatment, Journal of Applied Microbiology, 107, pp. 1457-1467. DOI:10.1111/j.1365-2672.2009.04337.x
  34. Matsis, V. M. & Grigoropoulou, H.P. (2008). Kinetics and equilibrium of dissolved oxygen adsorption on activated carbon, Chemical Engineering Science, 63, pp. 609-621. DOI:10.1016/j.ces.2007.10.005
  35. Oh, S., Hammes, F. & Liu, W.T. (2018). Metagenomic characterization of biofilter microbial communities in a full-scale drinking water treatment plant, Water Research, 128, pp. 278-285. DOI:10.1016/j.watres.2017.10.054
  36. Papciak, D., Kaleta, J., Puszkarewicz, A. & Tchorzewska-Cieślak, B. (2016). The use of biofiltration process to remove organic matter from groundwater, Journal of Ecological Engineering, 17, pp. 119-124. DOI:10.12911/22998993/63481
  37. PN-C-04578-02:1985 Water and wastewater - Testing of oxygen demand and organic carbon content - Determination of chemical oxygen demand (COD) by the permanganate method. (in Polish)
  38. Qi, W., Li, W., Zhang, J. & Zhang, W. (2019). Effect of biological activated carbon filter depth and backwashing process on transformation of biofilm community, Frontiers of Environmental Science & Engineering, 13, 15. DOI:10.1007/s11783-019-1100-0
  39. Rosenberg, E., DeLong E.F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), (2014). The Prokaryotes. Alphaproteobacteria and Betaproteobacteria. (4rd ed.), Springer, Berlin, Heidelberg. pp. 3-1012. DOI:10.1007/978-3-642-30197-1
  40. Dos Santos, P.R. & Daniel, L.A. (2020). A review: organic matter and ammonia removal by biological activated carbon filtration for water and wastewater treatment, International Journal of Environmental Science and Technology, 17, pp. 591-606. DOI:10.1007/s13762-019-02567-1
  41. Selbes, M., Brown, J., Lauderdale, C. & Karanfil, T. (2017). Removal of Selected C‐ and N‐DBP Precursors in Biologically Active Filters, Journal ‐ American Water Works Association, 109: E73-E84. DOI:10.5942/jawwa.2017.109.0014
  42. Servais, P., Billen, G. & Bouillot, P. (1994). Biological colonization of granular activated carbon filters in drinking-water treatment, Journal of Environmental Engineering, 120, 4, pp. 888-899. DOI:10.1061/(ASCE)0733-9372(1994)120:4(888)
  43. Shirey, T.B., Thacker, R.W. & Olson, J.B. (2012). Composition and stability of bacterial communities associated with granular activated carbon and anthracite filters in a pilot scale municipal drinking water treatment facility, Journal of Water and Health, 10, pp. 244–255. DOI:10.2166/wh.2012.092
  44. Simpson, D.R. (2008). Biofilm processes in biologically active carbon water purification, Water Research, 42, pp. 2839-2848. DOI:10.1016/j.watres.2008.02.025
  45. Su, H.-C., Liu, Y.-S., Pan C.-G., Chen, J., He, L.-Y. & Ying, G.-G. (2018). Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water, Science of the Total Environment, 616–617, pp. 453-461. DOI:10.1016/j.scitotenv.2017.10.318
  46. Velten, S., Boller, M., Köster, O., Helbing, J., Weilenmann, H.U. & Hammes, F. (2011). Development of biomass in a drinking water granular active carbon (GAC) filter, Water Research 45, pp. 6347-6354. DOI:10.1016/j.watres.2011.09.017
  47. Vignola, M., Werner,D., Wade, M.J., Meynet, P. & Davenport, R.J. (2018). Medium shapes the microbial community of water filters with implications for effluent quality, Water Research, 129, pp. 499-508. DOI:10.1016/j.watres.2017.09.042.
  48. Waak, M.B., Hozalski, R.M., Hallé, C. & LaPara, T.M. (2019). Comparison of the microbiomes of two drinking water distribution systems - with and without residual chloramine disinfection, Microbiome, 7, 87. DOI:10.1186/s40168-019-0707-5
  49. White, C.P., Debry, R.W. & Lytle, D.A. (2012). Microbial survey of a full-scale, biologically active filter for treatment of drinking water, Applied and Environmental Microbiology, 78, pp. 6390-6394. DOI:10.1128/AEM.00308-12
  50. Yapsakli, K. & Çeçen, F. (2010). Effect of type of granular activated carbon on DOC biodegradation in biological activated carbon filters, Process Biochemistry, 45, pp. 355-362. DOI:10.1016/j.procbio.2009.10.005
Go to article

Authors and Affiliations

Beata Mądrecka-Witkowska
1
ORCID: ORCID
Małgorzata Komorowska-Kaufman
1
ORCID: ORCID
Alina Pruss
1
ORCID: ORCID
Dorota Holc
1
ORCID: ORCID
Artur Trzebny
2
ORCID: ORCID
Miroslawa Dabert
2
ORCID: ORCID

  1. Poznan University of Technology, Institute of Environmental Engineering and Building Installations, Poznań, Poland
  2. Adam Mickiewicz University in Poznań, Faculty of Biology, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Candida albicans, a polymorphic yeast, is a physiological component of the human and animal commensal microbiome. It is an etiological factor of candidiasis, which is treated by azole antifungals. Growing resistance to azoles is a reason to look for other alternative treatment options. The pharmacotherapeutic use of plant extracts and essential oils has become increasingly important. In our experiment, C. albicans showed susceptibility to four observed plant extracts and essential oils from peppermint ( Mentha piperita), thyme ( Thymus vulgaris), sage ( Salvia officinalis), and oregano ( Origanum vulgare). Oregano plant extract and essential oil showed the highest antifungal activity, at MIC values of 4.9 mg/mL and 0.4 mg/mL respectively. Therefore, it was subjected to further research on the influence of virulence factors – biofilm formation, extracellular phospholipase production and germ tube formation. Oregano plant extract and essential oil showed an inhibitory effect on the observed C. albicans virulence factors at relatively low concentrations. The extract inhibited the adherence of cells at MIC 12.5 mg/mL and essential oil at MIC 0.25 mg/mL. Degradation of the formed biofilm was detected at MIC 14.1 mg/mL for plant extract and at MIC 0.4 mg/mL for essential oil. Extracellular phospholipase production was most effectively inhibited by the essential oil. In particular, the number of isolates with intensive extracellular phospholipase production decreased significantly. Of the 12 isolates intensively producing extracellular phospholipase, only 1 isolate (4.5%) retained intense production. Essential oil caused up to a 100 % reduction in germ tubes formation and plant extract reduced their formation depending on the concentration as follows: 2.6% (0.8 mg/mL), 21.2 % (6.25 mg/mL), and 64.5 % (12.5 mg/mL) compared to the control.
Go to article

Bibliography

1. Brondani LP, da Silva Neto TA, Freitag RA, Lund RG (2018) Evaluation of anti-enzyme properties of Origanum vulgare essential oil against oral Candida albicans. J Mycol Med 28: 94-100.
2. CLSI, Clinical and Laboratory Standards Institute (2017) M27-A3: Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. 4th ed. USA: Wayne, PA.
3. de Souza Ramos L, Barbedo LS, Braga-Silva LA, dos Santos AL, Pinto MR, da Graça Sgarbi DB (2015) Protease and phospholipase activities of Candida spp. isolated from cutaneous candidiasis. Rev Iberoam Micol 32: 122-125.
4. Doke SK, Raut JS, Dhawale S, Karuppayil SM (2014) Sensitization of Candida albicans biofilms to fluconazole by terpenoids of plant origin. J Gen Appl Microbiol 60: 163-168.
5. Edelmann A, Krüger M, Schmid J (2005) Genetic relationship between human and animal isolates of Candida albicans. J Clin Micro-biol 43: 6164-6166.
6. Ellepola AN, Samaranayake LP, Khan ZU (2016) Extracellular phospholipase production of oral Candida albicans isolates from smok-ers, diabetics, asthmatics, denture wearers and healthy individuals following brief exposure to polyene, echinocandin and azole antimy-cotics. Braz J Microbiol 47: 911-916.
7. Fule SR, Das D, Fule RP (2015) Detection of phospholipase activity of Candida albicans and non albicans isolated from women of reproductive age with vulvovaginal candidiasis in rural area. Indian J Med Microbiol 33: 92-95.
8. Jin Y, Yip HK, Samaranayake YH, Yau JY, Samaranayake LP (2003) Biofilm-forming ability of Candida albicans is unlikely to con-tribute to high levels of oral yeast carriage in cases of human immunodeficiency virus infection. J Clin Microbiol 41: 2961-2967.
9. Kumamoto CA, Gresnigt MS, Hube B (2020) The gut, the bad and the harmless: Candida albicans as a commensal and opportunistic pathogen in the intestine. Curr Opin Microbiol 56: 7-15.
10. Lee H, Woo ER, Lee DG (2018) Apigenin induces cell shrinkage in Candida albicans by membrane perturbation. FEMS Yeast Res 18: 10.1093.
11. Martins N, Ferreira IC, Barros L, Silva S, Henriques M (2014) Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia 177: 223-240.
12. Mattei AS, Alves SH, Severo CB, da Silva Guazzelli L, de Mattos Oliveira F, Severo LC (2013) Determination of germ tube, phos-pholipase, and proteinase production by bloodstream isolates of Candida albicans. Rev Soc Bras Med Trop 46: 340-342.
13. Mohandas V, Ballal M (2011) Distribution of Candida species in different clinical samples and their virulence: biofilm formation, pro-teinase and phospholipase production: a study on hospitalized patients in southern India. J Glob Infect Dis 3: 4-8.
14. Nagy M, Mučaji P, Grančai D (2017) Pharmacognosy. Biologically active plant metabolites and their sources, 2nd ed., Bratislava, Herba.
15. Pozzatti P, Loreto ES, Nunes Mario DA, Rossato L, Santurio JM, Alves SH (2010) Activities of essential oils in the inhibition of Can-dida albicans and Candida dubliniensis germ tube formation. J Mycol Med 20: 185-189.
16. Pristov KE, Ghannoum MA (2019) Resistance of Candida to azoles and echinocandins worldwide. Clin Microbiol Infect 25: 792-798.
17. Raut JS, Karuppayil SM (2014) A status review on the medicinal properties of essential oils. Ind Crop Prod 62: 250-264.
18. Rossoni RD, Barbosa JO, Vilela SF, dos Santos JD, Jorge AO, Junqueira JC (2013) Correlation of phospholipase and proteinase pro-duction of Candida with in vivo pathogenicity in Galleria mellonella. Braz J Oral Sci 12: 199-204.
19. Ruchi T, Sujata B, Anuradha D (2015) Comparison of phenotypic methods for the detection of biofilm production in uro-pathogens in a tertiary care hospital in India. Int J Curr Microbiol App Sci 4: 840-849.
20. Seyedmousavi S, Bosco SM, de Hoog S, Ebel F, Elad D, Gomes RR, Jacobsen ID, Jensen HE, Martel A, Mignon B, Pasmans F, Piecková E, Rodrigues AM, Singh K, Vicente VA, Wibbelt G, Wiederhold NP, Guillot J (2018) Fungal infections in animals: a patch-work of different situations. Med Mycol 56 (Suppl 1): 165-187.
21. Silva S, Rodrigues CF, Araújo D, Rodrigues ME, Henriques M (2017) Candida species biofilms’ antifungal resistance. J Fungi (Ba-sel) 3: 8.
22. Vitális E, Nagy F, Tóth Z, Forgács L, Bozó A, Kardos G, Majoros L, Kovács R (2020) Candida biofilm production is associated with higher mortality in patients with candidaemia. Mycoses 63: 352-360.
Go to article

Authors and Affiliations

P. Váczi
1
M. Proškovcová
1
E. Čonková
1
D. Marcinčáková
1
M. Bačkorová
2
M. Harčárová
3

  1. Department of Pharmacology and Toxicology
  2. Department of Pharmaceutical Technology, Pharmacognosy and Botany
  3. Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy, Komenského 73, Košice, 041 81, Slovakia

This page uses 'cookies'. Learn more