Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Bioeconomy is an important element of the Polish economy and the basis of bioeconomy is innovative biotechnology. The development of bio-economy (especially in closed circuit) requires modern “bio” technology. The resignation of such elements in the economy as achievements of modern biotechnology – albeit possible – is associated with a significant increase in development costs and the loss of access to innovative technologies that are essential for the today and future economy of the country. It is necessary to gain public acceptance for the emerging market of bioproducts, bioservice and bioprocesses. Legislation ammendment supporting innovation in general, and bio domains in particular, is a necessity. The current state of Polish biotechnology is presented on the basis of detailed studies and published on the website of the Biotechnology Committee of the Polish Academy of Sciences: “Biotechnological centers in Poland – MAP OF POLISH BIOTECHNOLOGY”; on this page you will find as well this report (www.kbiotech.pan.pl).

Go to article

Authors and Affiliations

Ekspertyza Komitetu Biotechnologii PAN
Download PDF Download RIS Download Bibtex

Abstract

It is often said that biotechnology is “as old as the world”. However, only now modern biotechnologies based on genetic engineering provide innovative solutions underpinning the development and transformation of the modern economy, thereby creating real opportunities to guarantee the supply of food, medicines and energy for the world's ever-growing population (in November 2022, the world's population will exceed 8 billion). The development of innovative technologies is often conditional on public acceptance and, as a consequence depends on public opinion, coherent legislation and a profound transformation from an oilbased economy to a circular and sustainable bioeconomy. Poland, as part of the European Union, belongs to the group of countries where such modern concepts are developing.
Go to article

Authors and Affiliations

Tomasz Twardowski
1
Alfredo Aguilar
2

  1. Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
  2. Task Group Bioeconomy, European Federation of Biotechnology, Barcelona, Spain
Download PDF Download RIS Download Bibtex

Abstract

Hydrobionts are considered as highly potential source for bioproduction (including energy carriers and fertilizers) and many biotechnological processes that include hydrobionts, particularly their biomass as a substrate are used in different fields of energy, cosmetology, medicine, pharmaceutics, aquaculture, agriculture, forestry etc. Latest developments prove efficiency in applying anaerobic digestion for purifying wastewaters from organic pollutants with the help of macrophytes and microphytes in conducting biomethanogenesis. Many studies have established that it is possible to reach high level of lipid extraction from algae (to 95%) with the help of organic solvents (methanol, acetone, hexane, diethyl ether etc). Blue – green algae biomass has been scientifically proved to be a good source for methane, methanol, ethanol, propanol, isopropanol, biodiesel and other biofuel types production. Macroalgae and microalgae contain β- carotene, biotin, folic acid, fucoidans, lectins, phenolics, sulphated polysaccharides and other derived biologically active compounds that can be used in producing vitamins, have anti-ulcer, antioxidant, antibiotic, antifouling, immune modulatory and other properties. Cyanidioschyzon merolae, Ostreococcus lucimarinus, O. tauri, Micromonas pusilla have shown high potential for hydrogen production while Rhizoclonium sp. has been experimentally used as a bounding material in briquetting miscanthus granules, resulting in 20 % higher dynamic strength. The article is a literature review and the purpose of this work is to classify and systemize hydrobionts, reveal regularity of their growth, conduct critical analysis on existing biotechnologies on using separate representatives of aquatic biomes as a raw material and also to review ways of intensification for these biotechnologies.

Go to article

Authors and Affiliations

Christina Soloviy
ORCID: ORCID
Myroslav Malovanyy
ORCID: ORCID
Volodymyr Nykyforov
Serhiy Dihtyar
Download PDF Download RIS Download Bibtex

Abstract

The practical applications of bacteriophages are associated with the problems related to the intensification, optimization of process production of this biomaterial and the search for new methods of production. The production of bacteriophages requires a fine balance between the dynamic growth of the bacteriophage and the host. The electromagnetic field (EMF) is a promising biotechnological method for the process production of bacteriophages. This study evaluates the use of various types of EMF to enhance the process. It was found that the process production of bacteriophages is divided into two stages. In the first stage, the influence of various types of EMF on the proliferation process of bacteria (host) was analyzed. Secondly, the process production of bacteriophage was implemented for the optimal infection conditions under the action of the various types of EMF. Moreover, the study demonstrated that the most effective bacteriophage production was the process with the application of the rotating magnetic field (RMF), pulsed magnetic field (PMF) and the static magnetic field (SMF) with negative polarity.
Go to article

Authors and Affiliations

Rafał Rakoczy
1
ORCID: ORCID
Maciej Konopacki
1 2
ORCID: ORCID
Marian Kordas
1
ORCID: ORCID
Bartłomiej Grygorcewicz
2
ORCID: ORCID

  1. West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42,71-065 Szczecin, Poland
  2. Pomeranian Medical University in Szczecin, Chair of Microbiology, Immunology and Laboratory Medicine, Department of Laboratory Medicine, al. Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The amount of solid organic waste is constantly growing. This is caused by the growth of industrial and agricultural capacities, and the inefficiency of existing waste processing technologies. Biotechnologies can provide effective environmentally friendly solutions for waste treatment. Therefore, the goal of our work was to compare the efficiency of strictly anaerobic fermentation of multi-component solid organic waste with hydrogen synthesis and waste treatment with pulsed air access in batch bioreactors.During fermentation, the following parameters were controlled: pH, redox potential (Eh), concentration of dissolved organics, and the content of H2, O2, and CO2 in the gas phase. The efficiency was evaluated via the process duration, calculation of the ratio of the initial and final weight of waste (Кd), and the yield of molecular hydrogen. Obtained results revealed high efficiency of organic waste degradation in both variants. The weight of waste 83-fold and 86-fold decreased, respectively. The time required for fermentation in strictly anaerobic conditions was 4 days, whereas 7 days were required for the mode with pulsed air access. The first variant provided a 2.8-fold higher hydrogen yield (54±4,1 L/kg of waste), and the second one provided a decrease in the concentration of dissolved organic compounds in the fermentation fluid. Fermentation is the effective approach for accelerated degradation of solid organic waste. Strictly anaerobic fermentation appeared to be useful in the need to accelerate the process. The mode with the pulsed air access can provide not only degradation of solid waste but also purification of the fermentation fluid.
Go to article

Bibliography

  1. Akhlaghi, N. & Najafpour-Darzi, Gh. (2020). A Comprehensive Review on Biological Hydrogen Production, International Journal of Hydrogen Energy, 45(43), pp. 22492–22512. DOI:10.1016/j.ijhydene.2020.06.182.
  2. Alwaeli, M., Alshawaf, M. & Klasik, M., (2022). Recycling of Selected Fraction of Municipal Solid Waste as Artificial Soil Substrate in Support of the Circular Economy, Archives of Environmental Protection, 48(4), pp. 68–77. DOI:10.24425/aep.2022.143710.
  3. Bakkaloglu, S., Lowry, D., Fisher, R.E., France, J.L., Brunner, D., Chen, H. & Nisbet, E.G. (2021). Quantification of Methane Emissions from UK Biogas Plants, Waste Management, 124, pp. 82–93. DOI:10.1016/j.wasman.2021.01.011.
  4. Berezkin, V.G. (1983). Chemical Methods in Gas Chromatography. Elsevier, The Netherlands 1983.
  5. Bernstad, A.K., Cánovas, A. & Valle, R. (2017). Consideration of Food Wastage along the Supply Chain in Lifecycle Assessments: A Mini-Review Based on the Case of Tomatoes, Waste Management & Research, 35(1), pp. 29–39. DOI:10.1177/0734242X16666945.
  6. Chaijak, P. & Sola, P. (2023). ‘The New Report of Domestic Wastewater Treatment and Bioelectricity Generation Using Dieffenbachia Seguine Constructed Wetland Coupling Microbial Fuel Cell (CW-MFC)’. Archives of Environmental Protection; 2023; 49(1), pp. 57-62. DOI:10.24425/aep.2023.144737.
  7. Chen, T., Zhang, Sh. & Yuan, Z. (2020). Adoption of Solid Organic Waste Composting Products: A Critical Review, Journal of Cleaner Production, 272, 122712. DOI:10.1016/j.jclepro.2020.122712.
  8. El Bari, H., Lahboubi, N., Habchi, S., Rachidi, S., Bayssi O., Nabil N., Mortezaei Y. & Villa, R. (2022). Biohydrogen Production from Fermentation of Organic Waste, Storage and Applications, Cleaner Waste Systems, 3, 100043. DOI:10.1016/j.clwas.2022.100043.
  9. Erdiwansyah, E., Gani, A., Mamat, R., Mahidin, M., Sudhakar, K., Rosdi, S.M. & Husin H. (2022). Biomass and Wind Energy as Sources of Renewable Energy for a More Sustainable Environment in Indonesia: A Review, Archives of Environmental Protection, 48(3), pp. 57–69. DOI:10.24425/aep.2022.142690.
  10. Erses, A.S., Onay, T.T. & Yenigun, O. (2008). Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills, Bioresource technology, 99(13), pp. 5418–5426. DOI:10.1016/j.biortech.2007.11.008.
  11. Gill, S.S., Jana, A.M. & Shrivastav, A. (2014). Aerobic bacterial degradation of kitchen waste: A review, Journal of microbiology, biotechnology and food sciences, 3(6), pp. 477–483. https://office2.jmbfs.org/index.php/JMBFS/article/view/7661.
  12. Havryliuk, O., Hovorukha, V., Bida, I., Gladka G., Tymoshenko, A., Kyrylov, S., Mariychuk, R. & Tashyrev O. (2023). Anaerobic Degradation of the Invasive Weed Solidago canadensis L. (Goldenrod) and Copper Immobilization by a Community of Sulfate-Reducing and Methane-Producing Bacteria, Plants, 12(1), pp. 198–213. DOI:10.3390/plants12010198.
  13. Hovorukha, V., Tashyrev, O., Matvieieva, N., Tashyreva, H., Havryliuk, O., Bielikova O. & Sioma, I. (2019). Integrated Approach for Development of Environmental Biotechnologies for Treatment of Solid Organic Waste and Obtaining of Biohydrogen and Lignocellulosic Substrate, Environmental Research, Engineering and Management, 74(4), pp. 31–42. |DOI:10.5755/j01.erem.74.4.20723.
  14. Hovorukha, V., Tashyrev, O., Havryliuk, O. & Iastremska, L. (2020). High Efficiency of Food Waste Fermentation and Biohydrogen Production in Experimental-Industrial Anaerobic Batch Reactor, The Open Agriculture Journal, 14(1), pp. 174–186. DOI:10.2174/1874331502014010174.
  15. Katinas, V., Marčiukaitis, M., Perednis, E. & Dzenajavičienė, E.F. (2019). Analysis of Biodegradable Waste Use for Energy Generation in Lithuania, Renewable and Sustainable Energy Reviews, 101, pp. 559–567. DOI:10.1016/j.rser.2018.11.022.
  16. Khan, M.A., Ngo H.H., Guo, W., Liu, Y., Zhang, X., Guo, J., Chang, S.W., Nguyen, D.D. & Wang, J. (2018). Biohydrogen Production from Anaerobic Digestion and Its Potential as Renewable Energy, Renewable Energy, 1st International Conference on Bioresource Technology for Bioenergy, Bioproducts & Environmental Sustainability, 129, pp. 754–768. DOI:10.1016/j.renene.2017.04.029.
  17. Lim, J.X., Zhou, Y. & Vadivelu, V.M. (2020). Enhanced Volatile Fatty Acid Production and Microbial Population Analysis in Anaerobic Treatment of High Strength Wastewater, Journal of Water Process Engineering, 33, 101058. DOI:10.1016/j.jwpe.2019.101058.
  18. Marone, A., Izzo, G., Mentuccia, L., Massini, G., Paganin, P., Rosa, S., Varrone, C. & Signorini, A. (2014). Vegetable Waste as Substrate and Source of Suitable Microflora for Bio-Hydrogen Production, Renewable Energy, 68, pp. 6–13. DOI:10.1016/j.renene.2014.01.013.
  19. Mata-Alvarez, J., Macé, S. & Llabrés P. (2000). Anaerobic Digestion of Organic Solid Wastes. An Overview of Research Achievements and Perspectives, Bioresource Technology, 74(1), pp. 3–16. DOI:10.1016/S0960-8524(00)00023-7.
  20. Meegoda, J.N., Li, B., Patel, K. & Wang, L.B. (2018). A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion, International Journal of Environmental Research and Public Health, 15(10), 2224. DOI:10.3390/ijerph15102224.
  21. Parthiba Karthikeyan, O., Trably, E., Mehariya, S., Bernet, N., Wong, J.W.C. & Carrere, H. (2018). Pretreatment of Food Waste for Methane and Hydrogen Recovery: A Review, Bioresource Technology, 249, pp. 1025–1039. DOI:10.1016/j.biortech.2017.09.105.
  22. Pawnuk, M., Szulczyński, B., den Boer, E. & Sówka I. (2022). Preliminary Analysis of the State of Municipal Waste Management Technology in Poland along with the Identification of Waste Treatment Processes in Terms of Odor Emissions, Archives of Environmental Protection, 48(3), pp. 3–20. DOI:10.24425/aep.2022.142685.
  23. Rubežius, M., Venslauskas, K., Navickas, K. & Bleizgys R. (2020). Influence of Aerobic Pretreatment of Poultry Manure on the Biogas Production Process, Processes, 8(9), 1109. DOI:10.3390/pr8091109.
  24. Scarlat, N., Dallemand J.-F. & Fahl F. (2018). Biogas: Developments and Perspectives in Europe, Renewable Energy, 129, pp. 457–472. DOI:10.1016/j.renene.2018.03.006.
  25. Shimizu, S., Fujisawa, A., Mizuno, O., Kameda, T. & Yoshioka, T. (2008). Fermentative Hydrogen Production From Food Waste Without Inocula, AIP Conference Proceedings, 987(1), pp. 171–174. DOI:10.1063/1.2896968.
  26. Suslova, O., Govorukha, V., Brovarskaya, O., Matveeva, N., Tashyreva, H. & Tashyrev O. (2014). Method for Determining Organic Compound Concentration in Biological Systems by Permanganate Redox Titration, International Journal Bioautomation, 18(1), pp. 45–52. https://biomed.bas.bg/bioautomation/2014/vol_18.1/files/18.1_05.pdf
  27. Tashyrev, O., Hovorukha, V., Havryliuk, O., Sioma, I., Gladka, G., Kalinichenko, O., Włodarczyk, P., Suszanowicz, D., Zhuk, H. & Ivanov, Y. (2022). Spatial Succession for Degradation of Solid Multicomponent Food Waste and Purification of Toxic Leachate with the Obtaining of Biohydrogen and Biomethane, Energies, 15(3), 911. DOI:10.3390/en15030911.
  28. Wang, X. & Zhao Y.-C. (2009). A Bench Scale Study of Fermentative Hydrogen and Methane Production from Food Waste in Integrated Two-Stage Process, International Journal of Hydrogen Energy, 34(1), pp. 245–254. DOI:10.1016/j.ijhydene.2008.09.100.
  29. Wu, X., Zhu, J., Dong, C., Miller, C., Li Y., Wang, L. & Yao, W. (2009). Continuous Biohydrogen Production from Liquid Swine Manure Supplemented with Glucose Using an Anaerobic Sequencing Batch Reactor, International Journal of Hydrogen Energy, 4th Dubrovnik Conference, 34(16), pp. 6636–6645. DOI:10.1016/j.ijhydene.2009.06.058.
  30. Xiao, M. & Wu, F. (2014). A Review of Environmental Characteristics and Effects of Low-Molecular Weight Organic Acids in the Surface Ecosystem, Journal of Environmental Sciences, 26(5), pp. 935–954. DOI:10.1016/S1001-0742(13)60570-7.
  31. Xue, S., Song, J., Wang, X., Shang, Z., Sheng, C., Li, C., Zhu, Y. & Liu, J. (2020). A Systematic Comparison of Biogas Development and Related Policies between China and Europe and Corresponding Insights, Renewable and Sustainable Energy Reviews, 117, 109474. DOI:10.1016/j.rser.2019.109474.
  32. Zhang, J., Kan, X., Shen, Y., Loh, K.-C., Wang, C.-H., Dai, Y. & Tong, Y.W. (2018). A Hybrid Biological and Thermal Waste-to-Energy System with Heat Energy Recovery and Utilization for Solid Organic Waste Treatment, Energy, 152, pp. 214–222. DOI:10.1016/j.energy.2018.03.143.
Go to article

Authors and Affiliations

Vira Hovorukha
1 2
ORCID: ORCID

  1. Institute of Environmental Engineering and Biotechnology, University of Opole, Poland
  2. Department of Extremophilic Microorganisms Biology, D.K. Zabolotny Institute of Microbiologyand Virology of the National Academy of Sciences of Ukraine, Kyiv, Ukraine

This page uses 'cookies'. Learn more