Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 26
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Paper deals with the new localizer GLOP2 designed for detection of the miners trapped in underground hard coal mines. The results of a field test conducted in coal mine BOBREK show that the presented localizer allows for efficient measurement of the distance between a trapped miner and the rescuer in the range of up to 15 m.
Go to article

Authors and Affiliations

Piotr Burnos
Janusz Gajda
Piotr Maj
Download PDF Download RIS Download Bibtex

Abstract

The subject of the research presented in this paper were financial results of mining industry enterprises (PKD 5 – P olish C lassification of A ctivity – “Mining of coal and lignite”) in 2007–2019. The research was conducted using relative and absolute financial measures, forming an extensive and coherent set of features characterizing their financial condition. The purpose was to measure and evaluate the efficiency of examined enterprises operation, considered as an attribute of development as well as factors describing and determining it. This evaluation was made against the background of ongoing restructuring processes taking into account their potential effects.

The article presents the course of the process of adapting P olish hard coal mining to market economy conditions after 1989. The process can be conventionally divided into several periods. The scope and intensity of changes in the mining industry followed the subsequent government programs for mining industry restructuring.

The lignite mining has not implemented any specific restructuring programs. The remedy processes were mainly related to organizational and ownership changes.

In relation to operation efficiency and value creation three turning points in the development path of enterprises were highlighted – 2011, 2015 and 2017, while the period of strong deterioration of results occurred in 2011–2015. I t was proved that restructuring processes did not affect the operating return on sales. However, there was a strong relation between changes in economic conditions on the coal market (prices) and the accumulation rate.

Go to article

Authors and Affiliations

Eugeniusz Jacek Sobczyk
Jarosław Kaczmarek
Kamil Fijorek
Michał Kopacz
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

United Nations Framework Convention on Climate Change obliges member countries to make an inventory of greenhouse gases emission and, among others, an inventory of fugitive emission from coal mining system. To comply with this obligation, basing on 1992 data. Poland has evaluated so-called "emission factors" for identified sources of methane emission. According to IPCC/OECD guidelines, the emission factors multiplied by coal output allow simple evaluation of methane emission. Since the time when the emission factors were evaluated in 1994, coal industry in Poland has undergone major organisational and technical changes. At the same time significant development of basic knowledge on geology of methane in coal-bearing strata have occurred. Both these facts make the emission factors evaluated earlier inaccurate. A wide range of research indispensable for accurate evaluation of new emission factors is described in the paper. It is also recommended in the paper that by the time the research results are known, the improved emission factors. which take into account organisational changes of mining industry should be used. Methane emission from coal mining system in 1999 evaluated using those emission factors equals 527,889 Gg.
Go to article

Authors and Affiliations

Lidia Gawlik
ORCID: ORCID
Ireneusz Grzybek
Download PDF Download RIS Download Bibtex

Abstract

The research of development capabilities is a fundamental of strategic issues, which has to be taken into consideration by coal mines. This is particularly difficult in the current environment, which is determined by its crisis situation. In such conditions, it is necessary to take difficult decisions, and serious, strategic challenges into account, which allow for the crisis to be overcome, for the renewal and economic effectiveness of the operation of these coal mines, which have potential to grow, and closing the coal mines, which have not potential to grow. Due to the effects of such decisions, which concern not only coal mines but also the Silesian region, it is essential to prepare information to support them and promote rational choices. This is related to the issue of research for development possibilities. The article presents considerations related to the subject of research for development possibilities of coal mines in a crisis situation. Taking the results of literature study into account, the model of research process was developed, and identified the research issues concerning the following:

- the identification of external factors which determine the possibility of development of the Polish mines and drawing a schedule of their changes in the future,

- the identification of internal factors which determine the possibility of development of the Polish mines,

- developing a way for the assessment of the development potential of the coal mines, to show appropriate strategic options and action programmes for these options,

- determining possible strategic options and corresponding schedules, appropriate for the specific nature of the mines.

The proposition of their solutions, which were obtained in the process of using the specific methods and research tools, allowed the guidelines in terms of research of development capabilities of coal mines to be presented.

Go to article

Authors and Affiliations

Jolanta Bijańska
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the study was determining of degree of contamination of soil cover as a result of disposing of different industrial wastes and comparison of the soil quality with quality of soils and the grounds described in standards in relation to the reclamation works carried out on the dump. Analysed waste dump belongs to the sparse objects of this type in the Upper Silesian Coal Basin, where both coal mining wastes as well as flying ashes occur.
During investigations there was done a collection of 9 soil samples around the dump using Egner`s cane from the depth of 30 cm. The content of heavy metals was determined (Cd, Co, Cr, Cu, Ni, Pb, Zn) using method of emission spectrometry (ICP-AES) and phase composition studies using the X-ray diffraction method (XRD ).
Obtained results enabled determination of impact of disposed wastes on the degradation of pedosphere of studied area, which represents III group of fallow lands. The contents of heavy metals in soil samples vary in wide spectrum, but do not exceed permissible content of metals and metalloids for the aforementioned soil group. The highest concentrations reaches iron (average content 0,6%), while concentrations of other elements do not exceed 0.02%. In the mineral composition of soil samples the dominant components are typical for soils in the area of post-mining dumps, i.e. quartz, feldspars, clay minerals, represented by kaolinite and illite. The presence of muscovite with a share of < 5% was also found. Minerals from the carbonate group – calcite (< 3.5%) and dolomite (< 0.3%) occur rarely. In the investigated samples there was identified presence of mullite, component typical for wastes coming from energy sector.
Go to article

Authors and Affiliations

Marek Marcisz
1
ORCID: ORCID
Zdzisław Adamczyk
1
ORCID: ORCID
Łukasz Gawor
1
ORCID: ORCID
Katarzyna Nowińska
1
ORCID: ORCID

  1. Silesian University of Technology, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Petřvald is a typical mining town in the Czech part of the Upper Silesian Basin. Since the Petřvald sub-basin is limited by significant tectonic structures, its development was to a great extent independent from other areas of the basin and can serve as an example of the influence of the geological structure on the development of mining and residential communities. In the first phase of mining development (ca 1830 to 1844) first claims begin to occur in the area. Thick coal seams were available in shallow depths. Due to missing railway connection, the demand for coal was not very large and the village economy was focused on agriculture. In the second phase (1844 to 1871), the first underground mines start to operate in the area. They were situated in favorable areas with thin overburden. Also, the connection to the railway improved the sale opportunities and a significant share of the local population worked in the mines. The third phase of mining (1871 to 1963) brought still increasing demand for coal, which resulted in establishing new coal mines in geologically less favorable areas (thicker overburden, water-bearing horizons). From the 1930s to the end of the 1950s the extraction peaked, which coincided with the urbanistic and cultural climax. New housing was provided for miners and their families by the companies. The final stage of mining development (1963 to 1998) is connected with the steady decline of production and phase-out of mining. The reason was a lack of economically recoverable coal reserves connected to unfavorable geological conditions. We conclude that the results of studies concerning specific geological parameters of coal deposits can be used for more detailed analyses regarding the development of urbanism, or to explain its causes.

Go to article

Authors and Affiliations

Martin Sivek
Jakub Jirásek
Download PDF Download RIS Download Bibtex

Abstract

There was done an inventarization of 41 coal mining dumping grounds, gathering waste material from 27 mines. Considering the fact, that five mines belong to multi-motion plants the research comprised 32 hard coal deposits. Source data with localization of particular dumps have been obtained from archival materials from the mines and municipalities, in the boundaries where the dumps occur as well as free accessible published materials (books, scientific papers). The data have been verified, in the beginning on the basis of topographical maps, orthophotomaps and aerial photographs and then, after vision done during field works they have been drawn on the topographic base, what resulted in creating the map of post-mining dumping grounds. Valorisation of coal mining waste dumps, using already repeatedly presented method, included defining of: name of the dump, coal mine from where the wastes come from, state of the dump, surface of the dump, type of technical and biological reclamation, accessibility of the object, possibilities of recovery of coal and the results have been drawn on the map. On the basis of collected and elaborated data there was done an attempt of defining of potential possibilities of recovery of coal from the dumps and connecting of coal quality in exploited deposits and coal content in waste material. The results showed that in spite of initial information that the majority of the dumps comprise potential objects of coal recovery of coal from waste material, eventually only in some cases (thirteen objects) the recovery seems to be economically justified.

Go to article

Authors and Affiliations

Marek Marcisz
ORCID: ORCID
Krystian Probierz
Łukasz Gawor
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The article presents the methodology for assessing the longevity of hard coal mines. Based on international experts’ assessments, important criteria for determining mine viability have been presented. The results refer to Polish coal mines in the area of the Upper Silesian Coal Basin, however, the methodology itself can be applied to other geological and mining conditions of mines elsewhere.

The results of structural analyses carried out using the MICMAC method for factors related to the mining geo-environment that may determine the longevity of individual hard coal mines are presented. The analyses were based on the results of expert surveys carried out using the Delphi method. The experts participating in the survey came from various countries and had extensive experience related to work or cooperation with hard coal mining. The criterion factors examined were assigned to two systems (groups) for which structural analysis was performed. The first group includes factors related to the level of exploitation hampering, while the second group includes factors related to hard coal quality and the availability of resources. As a result of the analyses the following were determined: the key factors which have the most significant influence on the system, result and goal factors, factors affecting the system and autonomous factors which have little effect on the system.

The obtained results allowed to determine which factors should be taken into account in the process of determining the longevity of a hard coal mine.

Go to article

Authors and Affiliations

Aleksander Frejowski
Józef Kabiesz
Download PDF Download RIS Download Bibtex

Abstract

Coal mining tends to face increasing stress and gas conditions when it extends to deeper levels. The mining-induced high stress and gas pressure concentrations often result in gasogeodynamic phenomena such as rock bursts and coal & gas outbursts. Over the last decades, these gasogeodynamic events have been observed more often in the Upper Silesian Coal Basin, Poland. With the increasing mining depth, these hazards not only become a serious safety risk but also represent a significant challenge for coal mining. In order to eliminate future hazards and improve safety in underground coal mines, it is necessary to apply particular methods for the prevention and mitigation of possible hazards during mining operations. Inaction or incorrect use of preventive measures may lead to gasogeodynamic events, which may result in accidents and material losses, thereby affecting the mine’s economic performance. Several coal mines operated by Jastrzębska Spółka Węglowa S.A. (JSW group), such as Pniówek, Budryk and Zofiówka coal mines have been identified as the area most prone to rock bursts as well as coal and gas outburst. Generally, the longwall panels often experience a high degree of these mining hazards. Therefore, the main aim of this research is to examine and optimise the possibility of application of prevention methods in order to reduce the frequency and scale of dangerous gasogeodynamic phenomena such as coal and gas outburst. As a main part, the field testing of the selected preventive methods that were conducted in the JSW coal mines. Based on the obtained results, the possibility of application of an optimal method for the prevention and control of coal and gas outburst in the geo-mining conditions of the JSW coal mines was discussed. The research results could be an example for other coal mines in mine planning and designing in the gasogeodynamic (coal and gas outburst) hazard-prone conditions.
Go to article

Authors and Affiliations

Phu Minh Vuong Nguyen
1
ORCID: ORCID
Piotr Litwa
1
ORCID: ORCID
Marek Przybylski
2
ORCID: ORCID

  1. Central Mining Institute, Department of Extraction Technologies, Rockburst and Risk Assessment, 1 Gwarków Sq., 40-166 Katowice, Poland
  2. Jastrzębska Spółka Węglowa S.A., Pniówek Coal Mine, 18 Krucza st. 43-250, Pawłowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents three German-located case studies based on stochastic methods founded by the theory proposed by Knothe and the development of the ‘Ruhrkohle method’ according to Ehrhardt and Sauer. These solutions are successfully applied to predict mining-induced ground movements. The possibility of forecasting both vertical and horizontal ground movements has been presented in the manuscript, which allowed for optimization mining projects in terms of predicted ground movements.
The first example presents the extraction of the Mausegatt seam beneath the district of Moers-Kapellen in the Niederberg mine. Considering, among others, the adaption of the dynamic impact of the underground operations to the mining-induced sensitivity of surface objects, the maximum permissible rate of the face advance has been determined.
The second example presents the extraction of coal panel 479 in the Johann seam located directly in the fissure zone of Recklinghausen-North. Also, in this case, the protection of motorway bridge structure (BAB A43/L225) to mining influences has been presented. The Ruhrkohle method was used as a basis for the mathematical model that was developed to calculate the maximum horizontal opening of the fissure zone and the maximum gap development rate.
Part of the article is dedicated to ground uplift due to rising mine water levels. Although it is not the main factor causing mining-related damage, such movements in the rock masses should also be predicted. As the example of the Königsborn mine, liquidated by flooding, shows stochastic processes are well suited for predicting ground uplift. The only condition is the introduction of minor adjustments in the model and the use of appropriate parameters.
Go to article

Authors and Affiliations

Anton Sroka
1
ORCID: ORCID
Stefan Hager
2
ORCID: ORCID
Rafał Misa
1
ORCID: ORCID
Krzysztof Tajduś
1
ORCID: ORCID
Mateusz Dudek
1
ORCID: ORCID

  1. Strata Mechanics Research Institute, Polish Academy of Science, Kraków, Poland
  2. RAG Aktiengesellschaft, Im Welterbe 10, 45141 Essen, Germany
Download PDF Download RIS Download Bibtex

Abstract

The role of the hard coal mining sector in ensuring energy security of the country has been presented in the paper. An analysis of its current status was made based on the results obtained by the sector in 2017. Moreover, the determinants which are the precondition for further sustainable and efficient operation in the years to come have been defined.

Go to article

Authors and Affiliations

Antoni Tajduś
ORCID: ORCID
Marian Turek
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The paper investigates the competitiveness of the Polish hard coal mining sector as a fuel source for heat and power generation. The main objective of the study is to make a quantitative assessment of the impact of the price relationship between domestic and imported steam coal on the consumption of domestic fine coal in the Polish heat and power generation sector. For this purpose, a long-term mathematical model of the Polish steam coal market is employed and scenarios that mimic the relationship between domestic and imported steam coal prices is developed. The following results are analysed:

- the volume of total domestic steam coal consumption under the scenarios analysed,

- the absolute difference in domestic steam coal consumption under the scenarios analysed in comparison with the scenario 0%,

- the total imported and domestic steam coal consumption in the period analysed.

In addition, the results were depicted in cartograms in order to present the distribution of domestic and imported coal consumption in the various regions of Poland.

The results of the study indicate that the supply of steam coal in Poland can be completely covered by domestic mines when the price of domestic coal is from –40% to –20% lower than that of imported coal. For the remaining scenarios, the consumption of imported coal increases and reaches its highest value in the scenario +40%, in which imported coal covered of 71% of total steam coal consumption in Poland over the period.

The conclusions presented in this paper provide valuable findings and policy insights into the competitiveness of domestic mines and management of domestic production both in Poland and other countries in which power generation systems are mostly dominated by coal.

Go to article

Authors and Affiliations

Przemysław Kaszyński
ORCID: ORCID
Aleksandra Komorowska
ORCID: ORCID
Marcin Malec
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The new legislative provisions, regulating the trade in solid fuels in our country, draw attention to the need to develop and improve methods and methods of managing hard coal sludge. The aim of the work was to show whether filtration parameters (mainly the permeability coefficient) of hard coal sludge are sufficient for construction of insulating layers in landfills at the stage of their closing and what is the demand for material in the case of such a procedure. The analysis was carried out for landfills for municipal waste in the Opolskie, Śląskie and Małopolskie provinces. For hard coal sludge, the permeability coefficient values are in the range of 10–8–10–11 m/s, with the average value of 3.16 × 10–9 m/s. It can be concluded that this material generally meets the criteria of tightness for horizontal and often vertical flows. When compaction, increasing load or mixing with fly ash from hard coal combustion and clays, the achieved permeability coefficient often lowers its values. Based on the analysis, it can be assumed that hard coal sludge can be used to build mineral insulating barriers. At the end of 2016, 50 municipal landfills were open in the Opolskie, Śląskie and Małopolskie Provinces. Only 36 of them have obtained the status of a regional installation, close to 1/3 of the municipal landfill are within the Major Groundwater Basin (MGB) range. The remaining storage sites will be designated for closure. Assuming the necessity to close all currently active municipal waste landfills, the demand for hard coal sludge amounts to a total of 1,779,000 m3 which, given the assumptions, gives a mass of 2,704,080 Mg. The total amount of hard coal sludge production is very high in Poland. Only two basic mining groups annually produce a total of about 1,500,000 Mg of coal sludge. The construction of insulating layers in landfills of inert, hazardous and non-hazardous and inert wastes is an interesting solution. Such an application is prospective, but it will not solve the problem related to the production and management of this waste material as a whole. It is important to look for further solutions.

Go to article

Authors and Affiliations

Beata Klojzy-Karczmarczyk
Jarosław Staszczak
Download PDF Download RIS Download Bibtex

Abstract

Significant quantities of coal sludge are created during the coal enrichment processes in the mechanical processing plants of hard coal mines (waste group 01). These are the smallest grain classes with a grain size below 1 mm, in which the classes below 0.035 mm constitute up to 60% of their composition and the heat of combustion is at the level of 10 MJ/kg. The high moisture of coal sludge is characteristic, which after dewatering on filter presses reaches the value of 16–28% (Wtot r) (archival paper PG SILESIA). The fine-grained nature and high moisture of the material cause great difficulties at the stage of transport, loading and unloading of the material. The paper presents the results of pelletizing (granulating) grinding of coal sludge by itself and the piling of coal sludge with additional material, which is to improve the sludge energy properties. The piling process itself is primarily intended to improve transport possibilities. Initial tests have been undertaken to show changes in parameters by preparing coal sludge mixtures (PG SILESIA) with lignite coal dusts (LEAG). The process of piling sludge and their mixtures on an AGH laboratory vibratory grinder construction was carried out. As a result of the tests, it can be concluded that all mixtures are susceptible to granulation. This process undoubtedly broadens the transport possibilities of the material. The grain composition of the obtained material after granulation is satisfactory. Up to 2 to 20 mm granules make up 90–95% of the product weight. The strength of the fresh pellets is satisfactory and comparable for all mixtures. Fresh lumps subjected to a test for discharges from a height of 700 mm can withstand from 7 to 14 discharges. The strength of the pellets after longer seasoning, from the height of 500 mm, shows different values for the analyzed samples. The values obtained for hard coal sludge and their blends with brown coal dust are at the level from 4 to 5 discharges. The strength obtained is sufficient to determine the possibility of their transport. At this stage of the work it can be stated that the addition of coal dust from lignite does not cause the deterioration of the material’s strength with respect to clean coal sludge. Therefore, there is no negative impact on the transportability of the granulated material. As a result of mixing with coal dusts, it is possible to increase their energy value (Klojzy-Karczmarczyk at al. 2018). The cost analysis of the analyzed project was not carried out.

Go to article

Authors and Affiliations

Jacek Feliks
Beata Klojzy-Karczmarczyk
Marek Wiencek
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the application of the Analytic Hierarchy Process technique to evaluate and choose the best alternative for acquiring hard coal for energy purposes by a potential Investor operating in the mining and energy sector. Six different sources supposed to provide hard coal were analysed, each of which might ensure a secure and independent supply of the material to the newly built coal-fired power plant. When choosing the best decision alternative, the positive and negative impacts of alternatives were considered through the BOCR analysis: benefits (B), opportunities (O), costs (C) and risks (R) analysis. For this purpose, 4 independent hierarchical models were developed. Different models have the same decision alternatives assessed, but they differ in criteria used to develop the models. In each of the models, in accordance with the AHP rules, were calculated final, global weights for the alternatives being assessed. Showing the best alternative was possible by applying the multiplicative formula (B ź O)/(C ź R), which value was used to rank and choose the best alternative from all assessed ones. The best decision alternative is the alternative where the (B ź O)/(C ź R) ratio is the highest.

Go to article

Authors and Affiliations

Eugeniusz J. Sobczyk
Aldona Wota
Stanisław Krężołek
Download PDF Download RIS Download Bibtex

Abstract

Because of the value of time, investors are interested in obtaining economic benefits rather early and at a highest return. But some investing opportunities, e.g. mineral projects, require from an investor to freeze their capital for several years. In exchange for this, they expect adequate remuneration for waiting, uncertainty and possible opportunities lost. This compensation is reflected in the level of interest rate they demand. Commonly used approach of project evaluation – the discounted cash flow analysis – uses this interest rate to determine present value of future cash flows. Mining investors should worry about project’s cash flows with greater assiduousness – especially about those arising in first years of the project lifetime. Having regard to the mining industry, this technique views a mineral deposit as complete production project where the base sources of uncertainty are future levels of economic-financial and technical parameters. Some of them are more risky than others – this paper tries to split apart and weigh their importance by the example of Polish hard coal projects at the feasibility study. The work has been performed with the sensitivity analysis of the internal rate of return. Calculations were made using the ‘bare bones’ assumption (on all the equity basis, constant money, after tax, flat price and constant operating costs), which creates a good reference and starting point for comparing other investment alternatives and for future investigations. The first part introduces with the discounting issue; in the following sections the paper presents data and methods used for spinning off risk components from the feasibility-stage discount rate and, in the end, some recommendations are presented.

Go to article

Authors and Affiliations

Piotr W. Saługa
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the situation of coal mining in Slovakia, focusing on the social-political aspects and environmental aspects of its sustainable development. In recent years, the mining of lignite and brown coal in Slovakia has been closely linked to the production of electricity and heat in the Novaky power plant. Domestic brown coal production covered more than three quarters of demand in the Slovak Republic in the last few years. The sustainability of coal mining in the coming years in Slovakia is closely associated with raw materials reserves, new mining technologies, the development of the Novaky power plant, and the government's commitments to national economic interests through securing the energy supply or state aid. Of course, of these factors must be considered in the context of international obligations, such as those related to climate and environment, particularly air protection.

The three most important Slovak brown coal deposits are located in the Upper Nitra Basin. This territory includes areas in the 5th and 4th degrees of environmental quality, signifying a disturbed and very disturbed environment. Since coal is expected to remain the dominant fuel for electricity generation araund the world, and in particular for many of the countries of Central and Eastern Europe, it is necessary to create conditions for the environmental sustainability of coal mining in the coming years within the context of international obligations. Both the security and the stability of the electricity network in Slovakia and maintaining employment levels in the Upper Nitra region play important roles in this discussion.

Underground coal gasification (UCG) is a newmining technology and a technology for gas recovery in situ.

A comprehensive evaluation of the impacts of underground coal gasification was carried out in addition to summarization of the expected impacts in terms of the significance and distribution of the time period.

Based on a comprehensive assessment of the proposed action, it can be stated that it could bring a socially unacceptable risk to the area, specifically the significant impairment of health or the environment (groundwater and nearby hot springs in Bojnice). The implementation of operations could affect the opulation's health, since the partition is placed in close proximity to residential areas.

Go to article

Authors and Affiliations

Erika Skvarekova
Lubica Kozakova
Download PDF Download RIS Download Bibtex

Abstract

The paper presents multi-criteria optimization method allowing for selection of the best production scenarios in underground coal mines. We discuss here the dilemma between strategies maximizing economic targets and rational resources depletion. Elaborated method combines different geological and mining parameters, structure of the deposit, mine’s infrastructure constrains with economic criteria such as the net present value (NP V), earnings before deducting interest and taxes (EBIT ) and the free cash flows to firm (FCFF). It refers to strategic production planning. Due to implementation of advanced IT software in underground coal mines (digital model, automated production scheduling) we were able to identify millions of scenarios finally reduced to a few – the best ones. The method was developed and tested using data from mine operation “X” (a real project – an example of a coking coal mine located in Poland). The reliability of the method was approved; we were able to identify multiple production scenarios better than the one chosen for implementation in the “X” mine. The final product of the method were rankings of scenarios grouped according to economic decision criteria. The best scenarios reached NP V nearly 50% higher than the Base Case, which held only 52. position out of 60. According to EBIT and FCFF criteria, 10 scenarios achieved results higher than the Base Case, but the percentage differences were very small, below 2 and 4%, respectively. The developed method is of practical importance and can be successfully applied to many other coal projects.

Go to article

Authors and Affiliations

Michał Kopacz
ORCID: ORCID
Leszek Malinowski
Sylwester Kaczmarzewski
ORCID: ORCID
Paweł Kamiński
Download PDF Download RIS Download Bibtex

Abstract

Global brown coal resources are estimated to be extracted at around 512 million Mg. They are found in over a dozen countries, including primarily: Australia, China, the Czech Republic, Greece, Germany, Poland, Russia, the United States and Turkey. More than 80% of total brown coal production in the EU takes place in: Germany, Poland, Greece and the Czech Republic. This means that the majority of production still uses conventional fuels, including both hard coal and brown coal. Given the current energy needs in the context of brown coal reserves depletion and the impacts of the current climate and energy policies of the EU, it is very important that all new investments in mining and energy complexes based on brown coal resources must be prepared carefully to ensure high production efficiency and minimize negative environmental impacts. This article attempts to solve a problem involving the choice of the location of the opening cut to expose brown coal deposits. Due to the stratified nature of brown coal deposits and the associated open-cast mining technology used in a continuous mining system with bucket wheel excavators, belt conveyor systems and spreaders, the location of the opening cut is not completely random and the number of potential solutions is finite. The multifaceted technical, organizational, economic, social and environmental problems require a holistic approach to this research problem. Such an approach should take the different, often opposing, perspectives of the many stakeholders into account. These issues can be solved using mathematical tools designed for multiple-criteria decision support. With the proposed method, a ranking of alternatives can be created, depending on the predefined location of the opening cut.

Go to article

Authors and Affiliations

Mateusz Henryk Sikora
Download PDF Download RIS Download Bibtex

Abstract

The mine seals in coal mines with a good impact resistance and air tightness are mainly used to isolate abandoned mining areas from active workings. For one thing, it can prevent the leakage of harmful gases, such as toxic gas from abandoned areas. For another, once an underground mine explosion happens, it can effectively block the spread of the explosion between the abandoned mining areas and the active workings. Hence, it is of great significance to study the explosion-proof performance and mechanical properties of the mine seals. First of all, the effect of slotting on the stability of the seals in coal mines under explosion load was explored in this study. By numerical simulations, the mechanical response characteristics of the seals with or without cutting a slot under the explosion load were compared in detail. The results show that slotting improved the stress concentration at the contact surface of surrounding rock by transferring partial impact received by mine seals to the surrounding rocks, thus, to achieve the effect of buffering explosion impact. Besides, such effect will be enhanced with increasing cutting depth into rock, and will stabilize when the depth is 20 cm. On this basis, the mechanical properties and damage of the seals constructed by different materials (standard brick and #C40 concrete) under the explosion load were compared. It was found that once a slot was set, the maximum deformation of the concrete seal was reduced, while the maximum deformation of the brick seal increased. Since the non-deformability of the concrete seal is obviously stronger than that of the brick seal, with the impact resistance stronger than that of the brick seal, the concrete seal is more suitable for slotting. Moreover, the damage of the seals in underground coal mines under the strata ground pressure was studied; the results of which show that the damage state under the ground pressure can be divided into 3 levels, i.e. no damage, minor damage and rapid development of damage. Meanwhile, it was found that the prestressed structure formed by the ground pressure at the level of no damage can enhance the protective effect of the seals in coal mines. However, when the ground pressure was further developed, the seal itself was destroyed and the protective effect was lost. In addition, the influence of roof to floor moving convergence, a deformation parameter of the roadway, on the seals was also investigated. The results show that the ground pressure and roof-to-floor convergence act on the seals in coal mines in the same way, thus roof to floor moving convergence can replace the ground pressure to analyze other related mechanical properties of the seals in coal mines in the future researches.

Go to article

Authors and Affiliations

Jianwei Cheng
ORCID: ORCID
Wanting Song
ORCID: ORCID
Yi Jing
Xixi Zhang
Marek Korzec
Marek Borowski
ORCID: ORCID
Yue Wang
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In recent years, the Vietnamese coal mining industry has observed a dynamic increase in both its production and efficiency. In Vietnam, the most precious type of coal is anthracite, which is found in the Quang Ninh province. Industrial anthracite deposits are estimated to be over 2 billion Mg. At present, coal deposits are extracted mostly by the underground method. Coal production is gradually increasing in the underground mines in the Quang Ninh area and it is expected to constitute about 75% of the country’s total coal production in 2030. This involves an increase in the number and length of underground workings.

Cam Pha is the largest coal basin of Vietnam, located in the Quang Ninh province. So far, the yearly length of underground workings driven in underground mines in the Cam Pha basin is roughly 90÷150 km. About 84 % of these underground workings are supported by the steel arch support made of SWP profile. A similar situation can be observed in Russia, Ukraine, China, India and Turkey. In addition, the average length of repaired underground workings in the Cam Pha basin constitutes approximately 30% of the total length driven . The main cause was reported is loss of underground workings stability. This requires significant material and labour costs as well as the cost of replacing damaged elements. Additionally, it disturbs the continuity of the mining operations.

This article presents the results of the numerical modelling of the rock mass around underground workings driven in typical geo-mining conditions for underground coal mines in the Cam Pha basin, supported by the steel arch support made of SWP and V profiles. As a result of the conducted analyses, the range of failure zone of the rock mass around underground workings and the distribution of reduced stress in the steel arch support elements were determined. The effort states of the steel arch support made of SWP22 profile and V21 profile were compared. The simulations considered different inclinations angle of coal seam, following the structure of the rock mass in the Cam Pha basin. The analysis was carried out using the based-finite difference method code, FLAC2D. Based on the obtained results, actions for improving the stability of underground workings driven in the underground mines of the Cam Pha basin were proposed.

Go to article

Authors and Affiliations

Phu Minh Vuong Nguyen
ORCID: ORCID
Marek Rotkegel
ORCID: ORCID
Hoang Do Van
Download PDF Download RIS Download Bibtex

Abstract

It is widely known and accepted that the global climate is changing with unprecedented speed. Climate models project increasing temperatures and changes in precipitation regimes which will alter the frequency, magnitude, and geographic distribution of climate-related hazards including flood, drought and heat waves. In the mining industry, climate change impacts are an area of research around the world, mostly in relation to the mining industry in Australia and Canada, where mining policies and mitigation actions based on the results of this research were adopted and applied. In Poland, there is still a lack of research on how climate change, and especially extreme weather events, impacts mining activity. This impact may be of particular importance in Poland, where the mining industry is in the process of intensive transition. The paper presents an overview of hazardous events in mining in Poland that were related to extreme weather phenomena. The needs and recommended actions in the scope of mitigating the impact of future climate change on mining in all stages of its functioning were also indicated. The presented analyses and conclusions are the results of the first activities in the TEXMIN project: The impact of extreme weather events on mining activities, identifying the most important factors resulting from climate change impact on mining.

Go to article

Authors and Affiliations

Ewa Janson
Małgorzata Markowska
Paweł Łabaj
Aleksander Wrana
Paweł Zawartka
Download PDF Download RIS Download Bibtex

Abstract

The Polish power generation system is based mostly on coal-fired power plants. Therefore, the coal mining sector is strongly sensitive to changes in the energy sector, of which decarbonization is the crucial one. The EU Emission Trading System (EU ETS) requires power generating companies to purchase European Emission Allowances (EUAs), whose prices have recently soared. They have a direct impact on the cost efficiency of hard coal-fired power generation, hence influence the consumption of hard coal on the power sector. In this context, the objective of this paper is to estimate the hard coal consumption in various regions of Poland under selected forecasts of the EUA price. To investigate this question, two models are employed:

 - the PolPower_LR model that simulates the Polish power generation system,

 - the FSM _LR model that optimizes hard coal supplies.

Three scenarios differentiated by the EUA price are designed for this study. In the first one, the average EUA price from 2014–2017 is assumed. In the second and third, the EUA prices are assumed accordingly to the NPS and the SDS scenario of the World Energy Outlook. In this study we consider only existing, modernized, under construction and announced coal-fired power generation units. The results of the study indicate that regardless of the scenario, a drop in hard coal consumption by power generation units is observed in the entire period of analysis. However, the dynamics of these changes differ. The results of this analysis prove that the volume of hard coal consumption may differ by even 136 million Mg (in total) depending on the EUA prices development scenario. The highest cumulated volume of hard coal consumption is observed in the Opolski, Radomski and Sosnowiecki region, regardless of the considered scenario.

Go to article

Authors and Affiliations

Przemysław Kaszyński
ORCID: ORCID
Aleksandra Komorowska
ORCID: ORCID
Jacek Kamiński
Download PDF Download RIS Download Bibtex

Abstract

There are 40 coal mines in Poland now. One of them (coal mine “Bogdanka”) is situated in Lublin Coal Basin, other are localised in Silesia and Małopolska regions. Coal mining is a source of large amounts of wastes. Mean annual production of wastes in only Lublin Coal Basin exceeds 2 million Mg, 65% of which is disposed on a heap. The rest is used to restore opencast excavations, to construct and repair local roads and to produce building materials. It seems that large amount of these wastes could be used to construct or modernize flood embankments and dykes. Using mine wastes as building materials requires the knowledge of their geotechnical parameters. A characteristic feature of mine wastes is their gradual weathering which affects geotechnical parameters largely determined by their mineral and petrographic composition.

This paper describes analyses of geotechnical parameters of mine wastes from Lublin Coal Basin (heap near coal mine “Bogdanka”) of various storage times and of samples collected after 10 years of exploitation of a dyke between ponds made of these wastes at the break of 1993 and 1994. Detailed analyses involved: grain size distribution, natural and optimum moisture content, maximum dry den-sity, shear strength and coefficient of permeability. Obtained results were compared with literature data pertaining to mine wastes from Upper Silesian Coal Basin and from other European coal basins.

Performed studies showed that coal mining wastes produced in Lublin Coal Basin significantly differed in the grain size distribution from wastes originating from Upper Silesian Coal Basin and that weathering proceeded in a different way in wastes produced in both sites.

Go to article

Authors and Affiliations

Piotr Filipowicz
Magdalena Borys

This page uses 'cookies'. Learn more