Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In recent years, scattered light measurement technology has developed into a common method for measuring roughness, form and waviness on precision machined surfaces. Meanwhile, the application for the material structure evaluation of electrolytically anodized surfaces has also been considered. In this context,we present a novel approach to layer thickness measurement of naturally anodised aluminium surfaces. Our approach is based on the reflection intensity of the light beam, which penetrates the oxide layer and is reflected back from the surface as well as from the layer base. In the approach, a model for estimating reflection intensity I from the absorption coefficient is employed. The methodology is tested by comparing results to a layer thickness evaluation using metallographic preparation. Based on the proposed approach, we are able to measure intervals of layer thicknesses on naturally anodized aluminium surfaces without contact.
Go to article

Authors and Affiliations

Tobias Geisler
1
Martin Manns
1

  1. Universität Siegen, Fakultät IV, Lehrstuhl für Fertigungsautomatisierung und Montage, PROTECH-Institut für Produktionstechnik, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany
Download PDF Download RIS Download Bibtex

Abstract

This paper describes a new contactless conductivity detector, whose electrodes are constructed of microchannels filled with solution of KCl - called pseudoelectrodes. The lab-on-a-chip microdevice was fabricated in poly(dimethylsiloxane) PDMS, using a moulding technique. The mould was made from a dry negative photoresist with a thickness of 50 μm. During the tests, the dimension! and arrangement of pseudoelectrodes` microchannels were evaluated. The analyte was pumped into the microchannel using a syringe pump with a flow rate of 50 μL/min. Reproducible!changes of the signal were obtained.

Go to article

Authors and Affiliations

Karolina Blaszczyk
Michal Chudy
Zbigniew Brzózka
Artur Dybko
Download PDF Download RIS Download Bibtex

Abstract

In this paper the problem of resistance measurement of ultrathin conductive lines on dielectric substrates dedicated for printing electronic industry is discussed. The measured line is transformed in a non-invasive way into a resonance circuit. By using a magnetic coupling between the source line and the tested line, the resistance measurement can be performed non-invasively, i:e. without a mechanical contact. The proposed contactless resistance measurement method is based on the resonance quality factor estimation and it is an example of the inverse problem in metrology.

Go to article

Authors and Affiliations

Krzysztof Szybiński
Download PDF Download RIS Download Bibtex

Abstract

The problems connected to developing inductive power transfer IPT systems in aspects of high efficiency and suppression of electromagnetic field (EMF) emission are discussed. It is shown how important it is to compensate for large leakage impedance of IPT coils (air transformer) to improve efficiency of high power transfer. Such compensation circuits operating with resonant frequencies at soft switching conditions additionally allow for reduction of switching losses in power semiconductor devices of converters. The consideration has been illustrated and verified by experimental results measured on two different test stands (50 kW with planar coils and with two 12 kW receiver coils) built in a laboratory of the Łukasiewicz Research Network – Electrotechnical Institute.

Go to article

Authors and Affiliations

R.M. Miśkiewicz
P. Anczewski
A.J. Moradewicz
Download PDF Download RIS Download Bibtex

Abstract

The machining accuracy of CNC machine tools is significantly affected by the thermal deformation of the feed system. The ball screw feed system is extensively used as a transmission component in precise CNC machine tools, responsible for converting rotational motion into linear motion or converting torque into repetitive axial force. This study presents a multi-physical coupling analysis model for the ball screw feed system, considering internal thermal generation, intending to reduce the influence of screw-induced thermal deformation on machining accuracy. This model utilizes the Fourier thermal conduction law and the principle of energy conservation. By performing calculations, the thermal source and thermal transfer coefficient of the ball screw feed system are determined. Moreover, the thermal characteristics of the ball screw feed system are effectively analyzed through the utilization of finite element analysis. To validate the proposed analysis model for the ball screw feed system, a dedicated test platform is designed and constructed specifically to investigate the thermal characteristics of the ball screw feed system in CNC machine tools. By selecting specific CNC machine tools as the subjects of investigation, a comprehensive study is conducted on the thermal characteristics of the ball screw feed system. The analysis entails evaluating parameters like temperature field distribution, thermal deformation, thermal stress, and thermal equilibrium state of the ball screw feed system. By comparing the simulation results from the analysis model with the experimental test results, the study yields the following findings: The maximum absolute error between the simulated and experimental temperatures at each measuring point of the feed system components is 2.4◦C, with a maximum relative error of 8.7%. The maximum absolute error between the simulated and experimental temperatures at the measuring point on the lead screw is 2.0◦C, with a maximum relative error of 6.8%. The thermal characteristics obtained from the steady-state thermal analysis model of the feed system exhibit a prominent level of agreement with the experimental results. The research outcomes presented in this paper provide valuable insights for the development of ball screw feed systems and offer guidance for the thermal design of machine tools.
Go to article

Authors and Affiliations

Junjian Zheng
1
ORCID: ORCID
Xiaolei Deng
2
Junshou Yang
2
Wanjun Zhang
2
Xiaoliang Lin
2
Shaofei Jiang
1
Xinhua Yao
3
Hongchen Shen
3

  1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310023, China
  2. Key Laboratory of Air-driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, China
  3. School of Mechanical Engineering, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, State Key Laboratory of FluidPower and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
Download PDF Download RIS Download Bibtex

Abstract

A contactless energy transmission system is essential to supply onboard systems of electromagnetically levitated vehicles without physical contact to the guide rail. One of the possibilities to realise a contactless power supply (CPS) is by integrating the primary actuator into the guide rail of an electromagnetic guiding system (MGS). The secondary actuator is mounted on the elevator car. During the energy transmission, load dependent non-linear losses occur in the guide rail. The additional losses, which are caused by the leakage flux penetrating into the guide rail, cannot be modelled using the classical approach of iron losses in the equivalent circuit of a transformer, which is a constant parallel resistance to the mutual inductance. This paper introduces an approach for modelling the load dependent non-linear losses occurring in the guide rail using additional variable discrete circuit elements.

Go to article

Authors and Affiliations

Aryanti Kusuma Putri
Rüdiger Appunn
Kay Hameyer

This page uses 'cookies'. Learn more