Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Adetailed tie model of cracking is proposed. The model is dedicated to both semi-massive RC (reinforcement concrete) members subjected to early-age imposed strains and non-massive members in which imposed strains occur after concrete hardening. As distinct from the currently applied European guidelines, the proposed model enables an analysis of crack width changes. These are a function of progressive imposed strain, material and geometry data, but also depend on the scale of cracking which determines the strain conditions of a member. Consequently, the new model takes account of not only the factors determining the cracking development but also the member relaxation effect that results from cracking. For this reason a new definition of restraint factor is proposed, which takes into account the range of cracking of a structural member, i.e. the number and width of cracks. Parametric analyses were performed of both the changes of the degree of restraint after cracking as well as the changes of crack width depending on the adopted type of aggregate, class of concrete and the coefficient of thermal expansion of concrete. These analyses indicate the potential benefits of the application of the presented model for both a more accurate interpretation of research and economical design of engineering structures.
Go to article

Authors and Affiliations

Mariusz Zych
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, St. Warszawska 24, 31-155 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Cracks in concrete are inevitable but fortunately cracking enables the structures to get rid of its bending moment peaks. The reduction is due to the redistribution of the load induced moments and cut of the temperatureimposed moments. However, cracking becomes completely harmless if the crack widths are controlled properly by reinforcement. In this regard a method for crack width prediction is presented in this paper which thanks its reliability is widely accepted in the standards EN 13084, CICIND and DIN 1056.

Go to article

Authors and Affiliations

P. Noakowski
A. Harling
Download PDF Download RIS Download Bibtex

Abstract

New approach using direct crack width calculations of the minimum reinforcement in tensile RC elements is presented. Verification involves checking whether the provided reinforcement ensures that the crack width that may result from the thermal-shrinkage effects does not exceed the limit value. The Eurocode provisions were enriched with addendums derived from the German national annex. Three levels of accuracy of the analysis were defined - the higher the level applied, the more significant reduction in the amount of reinforcement required can be achieved. A methodology of determining the minimum reinforcement for crack width control on the example of a RC retaining wall is presented. In the analysis the influence of residual and restraint stresses caused by hydration heat release and shrinkage was considered.

Go to article

Authors and Affiliations

M. Knauff
B. Grzeszykowski
A. Golubińska

This page uses 'cookies'. Learn more