Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 68
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The annual rate of decomposition in five soil types of tundra situated in the Fugleberget drainage area (Hornsund Fjord, South Spitsbergen) was investigated by use of the method of standard cellulose samples. The rate of decomposition varied from 15% to over 65% a year and was closely connected with a contents of nitrogen in soil, amount of which varied from 0.33% to 3.44%. The results presently obtained are much higher than those obtained by the same method in other polar regions.

Go to article

Authors and Affiliations

Piotr Bieńkowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents modification of the method dedicated to a complex area decomposition of a set of logic functions whereas the

altered method is dedicated to implement the considered logic circuits within FPGA structures. The authors attempted to reach solutions where the number of configurable logic blocks and the number of structural layer would be reasonably balanced on the basis of the minimization principle. The main advantage of the procedure when the decomposition is carried out directly on the BDD diagram is the opportunity of immediate checking whether the decomposed areas of the diagram do not exceed the resources of logic blocks incorporated into the integrated circuits that are used for implementation of the logic functions involved.

Go to article

Authors and Affiliations

A. Dzikowski
E. Hrynkiewicz
Download PDF Download RIS Download Bibtex

Abstract

The main goal of the considered work is to adjust mathematical modeling for mass transfer, to specific conditions resulting from presence of chemical surface reactions in the flow of the mixture consisting of helium and methanol. The thermocatalytic devices used for decomposition of organic compounds incorporate microchannels coupled at the ends and heated to 500 ◦C at the walls regions. The experiment data were compared with computational fluid dynamics results to calibrate the constants of the model’s user defined functions. These extensions allow to transform the calculations mechanisms and algorithms of commercial codes adapting them for the microflows cases and increased chemical reactions rate on the interphase between fluid and solid, specific for catalytic reactions. Results obtained on the way of numerical calculations have been calibrated and compared with the experimental data to receive satisfactory compliance. The model has been verified and the performance of the thermocatalytic reactor with microchannels under hydrogen production regime has been investigated.

Go to article

Authors and Affiliations

Janusz Badur
Michał Stajnke
Paweł Ziółkowski
Paweł Jóźwik
Zbigniew Bojar
Piotr Józef Ziółkowski
Download PDF Download RIS Download Bibtex

Abstract

The occurrence of 18 species of algae was stated in the investigated region. Among them the following were predominant: Himantothallus grandifolius, Desmarestia menziesii, Cystosphaera jacqninotii, Ascoseira mirabilis. Leptosomia simplex. Adenocystis utricularis. Monostroma hariotii, Iridaei: obovata, Hildenbrandia lecunnellieri, Plocamium coccineum and Phycodrys antarctica. Vertical stratification of the distribution of three singled out communities of algae was observed downwards to the depth of 90 m, which is the limit of the occurrence of the algae in the Bay. The process of decomposition depends on the place where it occurs, the kind of the thalluses and the season of the year. The quickest decomposition of algae was observed on the shore, in the summer and spring. The total quantity of algal matter washed ashore along 15.8 km of the coast line of Admiralty Bay, during the period between February and October 1979, was estimated at 279 metric tons of dry weight matter. From this quantity, in result of decomposition of the algae on the shore, 75 tons of the matter were released during an average time of 12 days. The remaining 204 tons of partially decomposed algal matter are driven by winds farther inshore or into the waters of the Bay or remain ashore among the stony rubble.

Go to article

Authors and Affiliations

Krzysztof Zieliński
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In the paper, an extended analysis of the polarization properties of a liquid crystal cell with a biconically tapered single-mode telecommunication optical fiber was presented. These properties are a result of a sample geometry and used LC materials. They were analyzed by using two theoretical models based on the matrix decomposition methods, i.e., polar and singular-value one. By measuring Mueller matrices, information about losses, depolarization, dichroism and birefringence was obtained. In the experiment two types of tested samples filled with well-known 6CHBT and E7 liquid crystals were prepared and all optical parameters were shown as the voltage dependence. The tested samples have dichroic properties and for both models calculated PDL is similar and it increases from 2.6 to 6.6 dB for E7 and from 0.4 to 2.7 dB for 6CHBT with voltage changes within the range of 40 – 190 V. Optical losses simultaneously decrease from 30 dB to 27 dB and from 36 dB to 28 dB, respectively. The birefringence properties cannot be directly comparable due to differences between both applied models but voltage fluctuations of these parameters are not significant. These results confirm expected dichroic properties of designed device and complete knowledge about its working principles. Moreover, presented analysis validates usefulness of the singular-value decomposition model applied to dichroic optical fiber elements.

Go to article

Authors and Affiliations

P. Marć
K. Stasiewicz
J. Korec
L.R. Jaroszewicz
ORCID: ORCID
P. Kula
Download PDF Download RIS Download Bibtex

Abstract

Wavelet transform becomes a more and more common method of processing 3D signals. It is widely used to analyze data in various branches of science and technology (medicine, seismology, engineering, etc.). In the field of mechanical engineering wavelet transform is usually used to investigate surface micro- and nanotopography. Wavelet transform is commonly regarded as a very good tool to analyze non-stationary signals. However, to analyze periodical signals, most researchers prefer to use well-known methods such as Fourier analysis. In this paper authors make an attempt to prove that wavelet transform can be a useful method to analyze 3D signals that are approximately periodical. As an example of such signal, measurement data of cylindrical workpieces are investigated. The calculations were performed in the MATLAB environment using the Wavelet Toolbox.

Go to article

Authors and Affiliations

Krzysztof Stępień
Włodzimierz Makieła
Download PDF Download RIS Download Bibtex

Abstract

The stability of positive linear continuous-time and discrete-time systems is analyzed by the use of the decomposition of the state matrices into symmetrical and antisymmetrical parts. It is shown that: 1) The state Metzler matrix of positive continuous-time linear system is Hurwitz if and only if its symmetrical part is Hurwitz; 2) The state matrix of positive linear discrete-time system is Schur if and only if its symmetrical part is Hurwitz. These results are extended to inverse matrices of the state matrices of the positive linear systems.

Go to article

Authors and Affiliations

T. Kaczorek
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an innovative method of technology mapping of the circuits in ALM appearing in FPGA devices by Intel. The essence of the idea is based on using triangle tables that are connected with different configurations of blocks. The innovation of the proposed method focuses on the possibility of choosing an appropriate configuration of an ALM block, which is connected with choosing an appropriate decomposition path. The effectiveness of the proposed technique of technology mapping is proved by experiments conducted on combinational and sequential circuits.

Go to article

Authors and Affiliations

M. Kubica
D. Kania
Download PDF Download RIS Download Bibtex

Abstract

Subspace-based methods have been effectively used to estimate enhanced speech from noisy speech samples. In the traditional subspace approaches, a critical step is splitting of two invariant subspaces associated with signal and noise via subspace decomposition, which is often performed by singular-value decomposition or eigenvalue decomposition. However, these decomposition algorithms are highly sensitive to the presence of large corruptions, resulting in a large amount of residual noise within enhanced speech in low signal-to-noise ratio (SNR) situations. In this paper, a joint low-rank and sparse matrix decomposition (JLSMD) based subspace method is proposed for speech enhancement. In the proposed method, we firstly structure the corrupted data as a Toeplitz matrix and estimate its effective rank value for the underlying clean speech matrix. Then the subspace decomposition is performed by means of JLSMD, where the decomposed low-rank part corresponds to enhanced speech and the sparse part corresponds to noise signal, respectively. An extensive set of experiments have been carried out for both of white Gaussian noise and real-world noise. Experimental results show that the proposed method performs better than conventional methods in many types of strong noise conditions, in terms of yielding less residual noise and lower speech distortion.
Go to article

Authors and Affiliations

Chengli Sun
Jianxiao Xie
Yan Leng
Download PDF Download RIS Download Bibtex

Abstract

Speech enhancement in strong noise condition is a challenging problem. Low-rank and sparse matrix decomposition (LSMD) theory has been applied to speech enhancement recently and good performance was obtained. Existing LSMD algorithms consider each frame as an individual observation. However, real-world speeches usually have a temporal structure, and their acoustic characteristics vary slowly as a function of time. In this paper, we propose a temporal continuity constrained low-rank sparse matrix decomposition (TCCLSMD) based speech enhancement method. In this method, speech separation is formulated as a TCCLSMD problem and temporal continuity constraints are imposed in the LSMD process. We develop an alternative optimisation algorithm for noisy spectrogram decomposition. By means of TCCLSMD, the recovery speech spectrogram is more consistent with the structure of the clean speech spectrogram, and it can lead to more stable and reasonable results than the existing LSMD algorithm. Experiments with various types of noises show the proposed algorithm can achieve a better performance than traditional speech enhancement algorithms, in terms of yielding less residual noise and lower speech distortion.

Go to article

Authors and Affiliations

Chengli Sun
Conglin Yuan
Download PDF Download RIS Download Bibtex

Abstract

Primary energy consumption depends on the size of the economy and its structure, including both industrial and service sectors, characterized by different energy demands. Some of the basic energy and economic indicators that can be used to analyze primary energy consumption include energy intensity, energy productivity and indicators measuring the activity of the economy (gross domestic product or gross value added). In the years 1995–2021, the Polish economy developed at a relatively constant pace, and the value of gross domestic product increased in real terms by almost 290% over the entire analyzed period. However, despite this increase, total primary energy consumption remained at the relatively constant level of around 3,800–4,600 PJ/year. This was caused by, among other factors, an increase in energy productivity on the one hand and a reduction in energy intensity on the other. It should be emphasized that a descriptive analysis of changes in primary energy consumption in Poland in the analyzed period, including changes in selected energy and economic indicators, does not allow the identification and quantification of the impact of all key factors on the total change of the examined value over time. In this context, the main aim of the research presented in this paper is to propose a decomposition model of primary energy consumption in Poland and adapt it to conduct analyses covering the period of economic and energy transition to quantitatively determine the impact of the identified factors on the total change in primary energy consumption in the 1995–2021 period. To perform the described research, decomposition analysis was applied, including a multiplicative and additive approach. A decomposition model was developed based on the formulated decomposition identity. Mathematical formulas of two methods were used to perform the calculations: a generalized Fisher index and the logarithmic mean Divisia index (LMDI). The obtained results indicate that the effects of demand and energy intensity factors had the most significant impact on the primary energy consumption change.
Go to article

Authors and Affiliations

Przemysław Kaszyński
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper focuses on the thermal behavior of the starch-based binder (Albertine F/1 by Hüttenes-Albertus) used in foundry technology of molding sand. The analysis of the course of decomposition of the starch material under controlled heating in the temperature range of 25-1100°C was conducted. Thermal analysis methods (TG-DTG-DSC), pyrolysis gas chromatography coupled with mass spectrometry (Py-GC/MS) and diffuse reflectance spectroscopy (DRIFT) were used. The application of various methods of thermal analysis and spectroscopic methods allows to verify the binder decomposition process in relation to conditions in the form in both inert and oxidizing atmosphere. It was confirmed that the binder decomposition is a complex multistage process. The identification of CO2 formation at set temperature range indicated the progressive process of decomposition. A qualitative evaluation of pyrolysis products was carried out and the course of structural changes occurring in the presence of oxygen was determined based on thermo-analytical investigations the temperature of the beginning of binder degradation in set condition was determined. It was noticed that, significant intensification of Albertine F/1 sample decomposition with formation of more degradation products took place at temperatures above 550ºC. Aromatic hydrocarbons were identified at 1100ºC.

Go to article

Authors and Affiliations

K. Kaczmarska
S. Żymankowska-Kumon
B. Grabowska
A. Bobrowski
S. Cukrowicz
Download PDF Download RIS Download Bibtex

Abstract

Very often, a digital system includes sequential blocks which can be represented using a model of the finite state machine (FSM). It is very important to improve such FSM characteristics as the number of used logic elements, operating frequency and consumed energy. The paper proposes a novel technology-dependant design method targeting LUT-based Mealy FSMs. It belongs to the group of structural decomposition methods. The method is based on encoding the product terms of Boolean functions representing the FSM circuit. To diminish the number of LUTs, a partition of the set of internal states is constructed. It leads to three-level logic circuits of Mealy FSMs. Each function from the first level requires only a single LUT to be implemented. The method of constructing the partition with the minimum amount of classes is proposed. There is given an example of FSM synthesis with the proposed method. The experiments with standard benchmarks were conducted. They show that the proposed method can improve such FSM characteristics as the number of used LUTs. This improvement is accompanied by a decrease in performance. A positive side effect of the proposed method is a reduction in power consumption compared with FSMs obtained with other design methods.
Go to article

Bibliography

  1.  J. Baillieul and T. Samad, Encyclopedia of Systems and Control, Springer, 2015.
  2.  M. Arora, Embedded System Design, Introduction to SoC System Architecture, Learning Bytes Publishing, 2016.
  3.  V. Chakravarthi, A Practical Approach to VLSI System on Chip (SoC) Design, A Comprehensive Guide, Springer, 2020.
  4.  P. Minns and I. Elliot, FSM-based digital design using Verilog HDL, John Wiley and Sons, 2008.
  5.  S. Baranov, Logic and System Design of Digital Systems, Tallinn: TUT Press, 2008.
  6.  B.D. Brown and H.C. Card, “Stochastic neural computation. I computational elements”, IEEE Trans. Comput. 50(9), 891‒905 (2001).
  7.  O. Barkalov, L. Titarenko, and M. Mazurkiewicz, Foundations of Embedded Systems, Springer, 2019.
  8.  A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W.J. Gross, “VLSI Implementation of Deep Neural Network Using Integral Stochastic Computing”, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25(10), 26882699 (2017).
  9.  P. Li, D.J. Lilja, W. Qian, M.D. Riedel, and K. Bazargan, “Logical computation on stochastic bit streams with linear finitestate machines”, IEEE Trans. Comput. 63(6), 1474‒1486 (2014).
  10.  Y. Xie, S. Liao, B. Yuan, Y. Wang, and Z. Wang, “Fully-parallel area-efficient deep neural network design using stochastic computing”, IEEE Trans. Circuits Syst. II-Express Briefs 64(12), 1382‒1386 (2017).
  11.  N. Das and P.A. Priya, “FPGA Implementation of Reconfigurable Finite State Machine with Input Multiplexing Architecture Using Hungarian Method”, Int. J. Reconfigurable Comput. 2018, 6831901 (2018).
  12.  J. Glaser, M. Damm, J. Haase, and C. Grimm, “TR-FSM: Transition-Based Reconfigurable Finite State Machine”, ACM Trans. Reconfigurable Technol. Syst. 4, 23:1‒23:14 (2011).
  13.  R. Czerwinski and D. Kania, Finite State Machine Logic Synthesis for Complex Programmable Logic Devices, Springer, 2013.
  14.  V. Sklyarov, I. Skliarova, A. Barkalov, and L. Titarenko, Synthesis and optimization of FPGA-based systems, Springer, 2014.
  15.  M. Kubica, D. Kania, and J. Kulisz, “A Technology Mapping of FSMs Based on a Graph of Excitations and Outputs”, IEEE Access 7, 16123‒16131 (2019).
  16.  A. Opara, M. Kubica, and D. Kania, “Methods of Improving Time Efficiency of Decomposition Dedicated at FPGA Structures and Using BDD in the Process of Cyber-Physical Synthesis”, IEEE Access 7, 20619‒20631 (2019).
  17.  M. Kubica and D. Kania, “Area-oriented technology mapping for LUT-based logic blocks”, Int. J. Appl. Math. Comput. Sci. 27(1), 207‒222 (2017).
  18.  M. Kubica, A. Opara, and D. Kania, “Logic Synthesis for FPGAs Based on Cutting of BDD”, Microprocess. Microsyst. 52, 173‒187 (2017).
  19.  I. Skliarova, V. Sklyarov, and A. Sudnitson, Design of FPGAbased circuits using Hierarchical Finite State Machines, Tallinn: TUT Press, 2012.
  20.  Altera, [Online]. http://www.altera.com (accesed: May, 2020).
  21.  Atmel, [Online]. http://www.atmel.com (accesed: May, 2020).
  22.  Xilinx, [Online]. http://www.xilinx.com (accesed: May, 2020).
  23.  I. Kuon, R. Tessier, and J. Rose, “FPGA architecture: Survey and Challenges”, Found. Trends Electron. Design Automat. 2(2), 135‒253 (2008).
  24.  I. Grout, Digital Systems Design with FPGAs and CPLDs, Elsevier Science, 2011.
  25.  S. Kilts, Advanced FPGA Design: Architecture, Implementation, and Optimization, Wiley-IEEE Press, 2007.
  26.  Intel, “Intel SoC FPGA Embedded Development Suite User Guide”. [Online]. https://www.intel.com/content/www/us/en/programmable/ documentation/lro1402536290550.html (accesed: May, 2020).
  27.  Xilinix, “Zynq UltraScale+MPSoC”. [Online]. https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc. html#productTable (accesed: May, 2020).
  28.  G. Stringham, Hardware/firmware Interface Design: Best Practices for Improving Embedded Systems Development, Newnes, 2010.
  29.  I. Skliarova and V. Sklyarov, FPGA-BASED hardware accelerators, Springer, 2019.
  30.  T. Łuba, M. Rawski, and Z. Jachna, “Functional Decomposition as a universal method for logic synthesis of digital circuits”, in Proceedings of IX International Conference MIXDES’02, 2002, p. 285290.
  31.  A. Ling, D.P. Singh, and S.D. Brown, “FPGA technology mapping: a study of optimality”, in Proceedings 42nd Design Automation Conference (DAC05), 2005, pp. 427‒432.
  32.  M. Kubica and D. Kania, “Technology mapping oriented to adaptive logic modules”, Bull. Pol. Acad. Sci. Tech. Sci. 67(5), 947‒956 (2019).
  33.  O. Barkalov, L. Titarenko, K. Mielcarek, and S. Chmielewski, Logic Synthesis for FPGA-Based Control Units: Structural Decomposition in Logic Design, Springer, 2020.
  34.  S. Yang, “Logic Synthesis and Optimization Benchmarks User Guide”, tech. rep., Microelectronic Center of North Carolina, 1991.
  35.  G.D. Micheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 1994.
  36.  E. Testa, L. Amaru, M. Soeken, A. Mishchenko, P. Vuillod, J. Luo, C. Casares, P. Gaillardon, and G.D. Micheli, “Scalable boolean methods in a modern synthesis flow”, in 2019 Design, Automation Test in Europe Conference Exhibition (DATE), 2019, pp. 1643‒1648.
  37.  R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-Strength Verification Tool”, in Computer Aided Verification, pp. 24‒40 eds. T. Touili, B. Cook, and P. Jackson, Springer, 2010.
  38.  A. Opara, M. Kubica, and D. Kania, “Methods of Improving Time Efficiency of Decomposition Dedicated at FPGA Structures and Using BDD in the Process of Cyber-Physical Synthesis”, IEEE Access 7, 20619‒20631 (2019).
  39.  O. Barkalov, L. Titarenko, and K. Mielcarek, “Hardware reduction for LUT-based Mealy FSMs”, Int. J. Appl. Math. Comput. Sci. 28(3), 595‒607 (2018).
  40.  Xilinix, “Virtex-7 family overview”. [Online]. https://www.xilinx.com/products/silicon-devices/fpga/virtex-7.html (accesed: May, 2020).
  41.  A. Mishchenko, R.K. Brayton, J.H.R. Jiang, and S. Jang, “Scalable Don’t-Care-Based Logic Optimization and Resynthesis”, ACM Trans. Reconfigurable Technol. Syst. 4(4), 34(1‒23) (2011).
  42.  A. Mishchenko, S. Chatterjee, and R.K. Brayton, “Improve-ments to Technology Mapping for LUT-based FPGAs”, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(2), 240253 (2007).
  43.  C. Scholl, Functional Decomposition with Application to FPGA Synthesis, Kluwer Academic Publishers, 2001.
  44.  L. Machado and J. Cortadella, “Support-Reducing Decomposition for FPGA Mapping”, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39(1), 213‒224 (2020).
  45.  R. Czerwinski, D. Kania, and J. Kulisz, “FSMs state encoding targeting at logic level minimization”, Bull. Pol. Acad. Sci. Tech. Sci. 54(4), 479‒487 (2006).
  46.  R. Czerwinski and D. Kania, “Synthesis method of high speed finite state machines”, Bull. Pol. Acad. Sci. Tech. Sci. 58(4), 635‒644 (2010).
  47.  A. Opara and D. Kania, “Decomposition-based logic synthesis for PAL-based CPLDs,” Int. J. Appl. Math. Comput. Sci. 20(2), 367‒384 (2010).
  48.  E. Sentowich, et al., “SIS: a system for sequential circuit synthesis”, in Proc. of the Inter. Conf. of Computer Design (ICCD’92), 1992, p.328333.
  49.  Xilinx, “XST User Guide. V. 11.3”. [Online]. http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/xst.pdf (accesed: May, 2020).
  50.  Vivado. [Online]. https://www.xilinx.com/products/design-tools/vivado.html (accesed: May, 2020).
  51.  A. Barkalov, L. Titarenko, M. Mazurkiewicz, and K. Krzywicki, “Encoding of terms in EMB-Based Mealy FSMs”, Appl. Sci. 10(8), 21 (2020).
  52.  S. Achasova, Synthesis algorithms for automata with PLAs, M: Soviet radio, 1987.
  53.  LGSynth93, “International Workshop on logic synthesis benchmark suite (LGSynth93)”. [Online]. https://people.engr.ncsu.edu/brglez/ CBL/benchmarks/LGSynth93/LGSynth93.tar, 1993 (accesed: February, 2018).
  54.  B. Lin, “Synthesis of multiple-level logic from symbolic highlevel description languages”, in IFIP International Conference on Very Large Scale Integration, 1989, pp. 187‒196).
  55.  M. Rawski, L. Jozwiak, M. Nowicka, and T. Łuba, “Nondisjoint decomposition of boolean functions and its application in FPGA-oriented technology mapping”, in EUROMICRO 97. Proceedings of the 23rd EUROMICRO Conference: New Frontiers of Information Technology (Cat. No.97TB100167), 1997, pp. 24‒30.
Go to article

Authors and Affiliations

Alexander Barkalov
1 2
ORCID: ORCID
Larysa Titarenko
1 3
ORCID: ORCID
Małgorzata Mazurkiewicz
1
ORCID: ORCID
Kazimierz Krzywicki
4
ORCID: ORCID

  1. University of Zielona Góra, ul. Licealna 9, 65-417 Zielona Góra, Poland
  2. Vasyl’ Stus Dohetsk National University, 21, 600-richya str., Vinytsia, 21021, Ukraine
  3. Kharkiv National University of Radio Electronics, Nauky avenye, 14, 6166, Kharkiv, Ukraine
  4. The Jacob of Paradies University, ul. Teatralna 25, 66-400 Gorzów Wielkopolski, Poland
Download PDF Download RIS Download Bibtex

Abstract

The binary classifiers are appropriate for classification problems with two class labels. For multi-class problems, decomposition techniques, like one-vs-one strategy, are used because they allow the use of binary classifiers. The ensemble selection, on the other hand, is one of the most studied topics in multiple classifier systems because a selected subset of base classifiers may perform better than the whole set of base classifiers. Thus, we propose a novel concept of the dynamic ensemble selection based on values of the score function used in the one-vs-one decomposition scheme. The proposed algorithm has been verified on a real dataset regarding the classification of cutting tools. The proposed approach is compared with the static ensemble selection method based on the integration of base classifiers in geometric space, which also uses the one-vs-one decomposition scheme. In addition, other base classification algorithms are used to compare results in the conducted experiments. The obtained results demonstrate the effectiveness of our approach.

Go to article

Bibliography

  1.  C. Sammut and G. I. Webb, Encyclopedia of Machine Learning and Data Mining. Springer US, 2016.
  2.  M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning. MIT press, 2018.
  3.  S. Osowski and K. Siwek, “Local dynamic integration of ensemble in prediction of time series”, Bull. Pol. Ac.: Tech. 67(3), 517–525 (2019).
  4.  O. Sagi and L. Rokach, “Ensemble learning: A survey”, Wiley Interdiscip. Rev.-Data Mining Knowl. Discov. 8(4), e1249 (2018).
  5.  R.M. Cruz, R. Sabourin, and G.D. Cavalcanti, “Dynamic classifier selection: Recent advances and perspectives”, Inf. Fusion 41, 195–216 (2018).
  6.  O.A. Alzubi, J.A. Alzubi, M. Alweshah, I. Qiqieh, S. AlShami, and M. Ramachandran, “An optimal pruning algorithm of classifier ensembles: dynamic programming approach”, Neural Comput. Appl. 32, 16091–16107 (2020).
  7.  Y. Bian, Y. Wang, Y. Yao, and H. Chen, “Ensemble pruning based on objection maximization with a general distributed framework”, IEEE Trans. Neural Netw. Learn. Syst. 31(9), 3766‒3774 (2020).
  8.  R.M. Cruz, D.V. Oliveira, G.D. Cavalcanti, and R. Sabourin, “Fire-des++: Enhanced online pruning of base classifiers for dynamic ensemble selection”, Pattern Recognit. 85, 149–160 (2019).
  9.  T.T. Nguyen, A.V. Luong, M.T. Dang, A.W.-C. Liew, and J. McCall, “Ensemble selection based on classifier prediction confidence”, Pattern Recognit. 100, 107104 (2020).
  10.  Z.-L. Zhang, X.-G. Luo, S. García, J.-F. Tang, and F. Herrera, “Exploring the effectiveness of dynamic ensemble selection in the one- versus-one scheme”, Knowledge-Based Syst. 125, 53–63 (2017).
  11.  M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera, “Dynamic classifier selection for one-vs-one strategy: avoiding non-competent classifiers”, Pattern Recognit. 46(12), 3412–3424 (2013).
  12.  M. Pawlicki, A. Giełczyk, R. Kozik, and M. Choraś, “Faultprone software classes recognition via artificial neural network with granular dataset balancing”, in International Conference on Computer Recognition Systems 2019, Springer, 2019, pp. 130–140.
  13.  D. Rajeev, D. Dinakaran, and S. Singh, “Artificial neural network based tool wear estimation on dry hard turning processes of aisi4140 steel using coated carbide tool”, Bull. Pol. Ac.: Tech. 65(4), 553–559 (2017).
  14.  D. Więcek, A. Burduk, and I. Kuric, “The use of ann in improving efficiency and ensuring the stability of the copper ore mining process”, Acta Montanistica Slovaca 24(1), 1‒14 (2019).
  15.  P. Raja, R. Malayalamurthim, and M. Sakthivel, “Experimental investigation of cryogenically treated hss tool in turning on aisi1045 using fuzzy logic–taguchi approach”, Bull. Pol. Ac.: Tech. 67(4), 687–696 (2019).
  16.  T. Andrysiak and L. Saganowski, “Anomaly detection for smart lighting infrastructure with the use of time series analysis”, J. UCS 26(4), 508–527 (2020).
  17.  A. Burduk, K. Musiał, J. Kochańska, D. Górnicka, and A. Stetsenko, “Tabu search and genetic algorithm for production process scheduling problem”, LogForum 15, 181–189 (2019.
  18.  M. Choraś, M. Pawlicki, D. Puchalski, and R. Kozik, “Machine learning–the results are not the only thing that matters! what about security, explainability and fairness?”, in International Conference on Computational Science, Springer, 2020, pp. 615–628.
  19.  P. Zarychta, P. Badura, and E. Pietka, “Comparative analysis of selected classifiers in posterior cruciate ligaments computer aided diagnosis”, Bull. Pol. Ac.: Tech. 65(1), 63–70 (2017).
  20.  I. Rojek, E. Dostatni, and A. Hamrol, “Ecodesign of technological processes with the use of decision trees method”, in International Joint Conference SOCO’17-CISIS’17-ICEUTE’17, León, Spain, 2017, Springer, 2018, pp. 318–327.
  21.  I. Rojek and E. Dostatni, “Machine learning methods for optimal compatibility of materials in ecodesign”, Bull. Pol. Ac.: Tech. 68(2), 199–206 (2020).
  22.  P. Prokopowicz, D. Mikołajewski, K. Tyburek, and E. Mikołajewska, “Computational gait analysis for post-stroke rehabilitation purposes using fuzzy numbers, fractal dimension and neural networks”, Bull. Pol. Ac.: Tech. 68(2), 191–198 (2020).
  23.  S. Igari, F. Tanaka, and M. Onosato, “Customization of a micro process planning system for an actual machine tool based on updating a machining database and generating a database-oriented planning algorithm”, Trans. Inst. Syst. Control Inform. Eng. 26(3), 87–94 (2013).
  24.  C. Tan and S. Ranjit, “An expert carbide cutting tools selection system for cnc lathe machine”, Int. Rev. Mech. Eng. 6(7), 1402–1405 (2012).
  25.  I. Rojek, “Technological process planning by the use of neural networks”, AI EDAM – AI EDAM-Artif. Intell. Eng. Des. Anal. Manuf. 31(1), 1–15 (2017).
  26.  P. Heda, I. Rojek, and R. Burduk, “Dynamic ensemble selection – application to classification of cutting tools”, in International Conference on Computer Information Systems and Industrial Management LNCS(12133), Springer, 2020, pp. 345–354.
  27.  L.I. Kuncheva, Combining Pattern Classifiers. John Wiley & Sons, Inc., 2014.
  28.  E. Santucci, L. Didaci, G. Fumera, and F. Roli, “A parameter randomization approach for constructing classifier ensembles”, Pattern Recognit. 69, 1–13 (2017).
  29.  M. Mohandes, M. Deriche, and S. O. Aliyu, “Classifiers combination techniques: A comprehensive review”, IEEE Access 6, 19626–19639 (2018).
  30.  J. Yan, Z. Zhang, K. Lin, F. Yang, and X. Luo, “A hybrid scheme-based one-vs-all decision trees for multi-class classification tasks”, Knowledge-Based Syst. 198. 105922 (2020).
  31.  P. Chaitra and R.S. Kumar, “A review of multi-class classification algorithms”, Int. J. Pure Appl. Math. 118(14), 17–26 (2018).
  32.  M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera, “An overview of ensemble methods for binary classifiers in multi- class problems: Experimental study on onevs-one and one-vs-all schemes”, Pattern Recognit. 44(8), 1761–1776 (2011).
  33.  R. Burduk, “Integration base classifiers based on their decision boundary”, in International Conference on Artificial Intelligence and Soft Computing, Springer, 2017, pp. 13–20.
  34.  M.P. Groover, Fundamentals of modern manufacturing: materials, processes and systems, Willey, 2010.
  35.  M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification tasks”, Inf. Process. Manage. 45, 427–437 (2009).
  36.  I. Rojek, “Classifier models in intelligent capp systems”, in Man-Machine Interactions, pp. 311–319, Springer, 2009.
Go to article

Authors and Affiliations

Izabela Rojek
1
ORCID: ORCID
Robert Burduk
2
ORCID: ORCID
Paulina Heda
2

  1. Institute of Computer Science, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  2. Faculty of Electronic, Wroclaw University of Science and Technology, ul. Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

To reduce the random error of microelectromechanical system (MEMS) gyroscope, a hybrid method combining improved empirical mode decomposition (EMD) and least squares algorithm (LS) is proposed. Firstly, based on the multiple screening mechanism, intrinsic mode functions (IMFs) from the first decomposition are divided into noise IMFs, strong noise mixed IMFs, weak noise mixed IMFs and signal IMFs. Secondly, according to their characteristics, they are processed again. IMFs from the second decomposition are divided into noise IMFs and signal IMFs. Finally, useful signal is gathered to obtain the final denoising signal. Compared with some other denoising methods proposed in recent years, the experimental results show that the proposed method has obvious advantages in suppressing random error, greatly improving the signal quality and improving the accuracy of inertial navigation.
Go to article

Authors and Affiliations

Hailong Rong
1
Tianlei Jin
1
Hao Wang
1
Xiaohui Wu
1
Ling Zou
1

  1. Changzhou University, Changzhou 213164, China
Download PDF Download RIS Download Bibtex

Abstract

Changes in chemical composition of the surface waters percolated through the soil and running off from the penguin rookeries are described. It was found, that the chemical composition of waters flowing from the breeding places depends on the size and rate of precipitation, and also on the location of rookeries. The longer and more complicated is the run off route of waters from the terrain of rookery, the more diluted are the solutions that reach the sea. In such case a significant part of phosphorus contained in the fecal materials may be retained on land, while most of ammonia volatilizates into the atmosphere.

Go to article

Authors and Affiliations

Andrzej Tatur
Andrzej Myrcha
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses Bayesian productivity analysis of 27 EU Member States, USA, Japan and Switzerland. Bayesian Stochastic Frontier Analysis and a two-stage structural decomposition of output growth are used to trace sources of output growth. This allows us to separate the impacts of capital accumulation, labour growth, technical progress and technical efficiency change on economic development. Since estimates of the growth components are conditioned upon model parameterisation and the underlying assumptions, a number of possible specifications are considered. The best model for decomposing output growth is chosen based on the highest marginal data density, which is calculated using adjusted harmonic mean estimator.

Go to article

Authors and Affiliations

Kamil Makieła
Download PDF Download RIS Download Bibtex

Abstract

Poland is expected to enter the Exchange Rate Mechanism II (ERM II). The European Central Bank recommends that the ERM II central rate should reflect the best possible assessment of the equilibrium exchange rate. Since the equilibrium rate is changing in time, it is important to identify the pushing and pulling forces of the exchange rate. This knowledge will let the authorities to defend only the exchange rate that is in equilibrium and to assess outcomes of their actions. We use the VEC approach of Johansen to estimate the behavioral equilibrium exchange rate and to identify the pushing forces of the Polish zloty/euro rate. We apply the Gonzalo-Granger decomposition to calculate the permanent equilibrium exchange rate and to identify the pulling forces of the zloty exchange rate. We demonstrate that this approach may be useful for Polish authorities while entering the ERM II as well as within that mechanism.

Go to article

Authors and Affiliations

Joanna Bęza-Bojanowska
Download PDF Download RIS Download Bibtex

Abstract

This paper studies the long-run relationship between consumption, labour income and asset wealth in Poland. Within cointegrated VAR model dynamic responses of the variables in the system to shocks are studied. In addition, series are decomposed into permanent and transitory components on the basis of the cointegrating relation found in the system.

Main conclusion of this paper is that deviations of the three variables from their estimated long-run relationship are better explained with uctuations of labour income than assets. A tentative explanation of this nding is presented. Additionally, the magnitude of the asset wealth eect in Poland is calculated and compared with other studies for European countries and for the U.S.

Go to article

Authors and Affiliations

Magdalena Zachłod-Jelec
Download PDF Download RIS Download Bibtex

Abstract

Various quantile regression approaches are implemented to analyze thecharacteristics of Italian data on earnings in the tails. A changing coefficientspattern across quantiles shows increasing returns to education along the wagedistribution. A quantile decomposition approach shows that higher educationgrants higher return at all quantiles, thus implying additional, non-linear returnsto higher education throughout the entire pattern of the earning distribution.Wage gender gap displays a decreasing pattern across quantiles, and it doesnot disappear at the higher quantiles. The southern workers penalty decreasesacross quantiles as well for highly educated workers.

Go to article

Authors and Affiliations

Marilena Furno
Download PDF Download RIS Download Bibtex

Abstract

We estimated a structural vector autoregressive (SVAR) model describing the links between a banking sector and a real economy. We proposed a new method to verify robustness of impulse-response functions to the ordering of variables in an SVAR model. This method applies permutations of orderings of variables and uses the Cholesky decomposition of the error covariance matrix to identify parameters. Impulse response functions are computed and combined for all permutations. We explored the method in practice by analyzing the macro-financial linkages in the Polish economy. Our results indicate that the combined impulse response functions are more uncertain than those from a single model specification with a given ordering of variables, but some findings remain robust. It is evident that macroeconomic aggregate shocks and interest rate shocks have a significant impact on banking variables.

Go to article

Authors and Affiliations

Dobromił Serwa
Piotr Wdowiński
Download PDF Download RIS Download Bibtex

Abstract

Over the last decades the method of proper orthogonal decomposition (POD) has been successfully employed for reduced order modelling (ROM) in many applications, including distributed parameter models of chemical reactors. Nevertheless, there are still a number of issues that need further investigation. Among them, the policy of the collection of representative ensemble of experimental or simulation data, being a starting and perhaps most crucial point of the POD-based model reduction procedure. This paper summarises the theoretical background of the POD method and briefly discusses the sampling issue. Next, the reduction procedure is applied to an idealised model of circulating fluidised bed combustor (CFBC). Results obtained confirm that a proper choice of the sampling strategy is essential for the modes convergence however, even low number of observations can be sufficient for the determination of the faithful dynamical ROM.

Go to article

Authors and Affiliations

Katarzyna Bizon
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of analyzes of gases emitted during exposure to high temperature foundry molding sands, where binders are

organic resins. As a research tool has been used special gas chromatograph designed to identify odorous compounds including the group of

alkanes.

Go to article

Authors and Affiliations

J. Faber
K. Perszewska

This page uses 'cookies'. Learn more