Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The results of bearing capacity, deformability and fracture toughness of reinforced concrete beams with the external reinforcement in the form of steel cut and stretchy sheet, obtained due to the conducting of the experiment and mathematical simulation which were made of concrete of C40/50 class are given in the article. Mathematical simulation of beam structures is done on the basis of the deformation model which allows to conduct calculations of the unified methodological positions of different elements with diverse configuration of cross section and reinforcement as well as take into consideration elastic and plastic properties of concrete and reinforcement, assessing the actual stress-strain state of sections of reinforced concrete elements at different loading levels, including ultimate one. The deformation model is based on the actual diagrams use of concrete and reinforcement materials deformation and conditions of efforts balance in the normal section and hypothesis of flat sections. The theoretical value of bearing capacity and deformability, obtained as a result of the mathematical simulation was compared to the experimental data. The satisfactory coincidence of the mathematical calculation of bearing capacity, deformability, fracture toughness and experimental data gives an opportunity to use the algorithm not only for beam structures with bar reinforcement but also for beam structures with the external reinforcement in the form of steel cut and stretchy sheet.
Go to article

Authors and Affiliations

Sofiya Burchenya
Shmyh Roman
Download PDF Download RIS Download Bibtex

Abstract

In the research of long-time operating road bridge superstructures, it should note that when the internal forces in the beam elements reach specific values, the stiffness of the cross-section of these elements should decrease. Besides that, if there are damaged places in the beam-element of the road bridge superstructures, the element could not work normally, and the redistribution of internal forces between elements in the whole system would happen. This phenomenon was not taken into account in the initial design calculation. In practice, it shows that many road bridges are subjected to greater loads than the calculated loads in the design process, but they still normally operate. This article proposes the other limit state criteria in evaluating the load capacity reserve of road-bridge superstructures using nonlinear analysis based on nonlinear deformational models of modern construction codes. The proposed calculation procedure is established to explain the load capacity reserve of long-time operating road bridge superstructures in the case of the lack of experimental evaluation. From the obtained results, the suitable limit state criteria for road bridge superstructures are suggested, and the conclusions about the accuracy of the proposed approach of nonlinear structural analysis are recommended.
Go to article

Authors and Affiliations

Thuy Van Tran Thi
1
ORCID: ORCID
Quyen Vu Thi Bich
1
ORCID: ORCID

  1. Hanoi Architectural University, Faculty of Civil Engineering, Km.10 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam

This page uses 'cookies'. Learn more