Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Activated tungsten inert gas (ATIG) welding has a good depth of penetration (DOP) as compared to the conventional tungsten inert gas (TIG) welding. This paper is mainly focused on ATIG characterization and mechanical behavior of aluminum alloy (AA) 6063-T6 using SiO2 flux. The characterization of the base material (BM), fusion zone (FZ), heat affected zone (HAZ) and, partially melted zone is carried out using the suitable characterization methods. The weld quality is characterized using ultrasonic-assisted non-destructive evaluation. A-scan result confirms that the ATIG welded samples have more DOP and less bead width as compared to conventional TIG. The recorded tensile strength of ATIG with SiO2 is better than the conventional TIG welding. The failure mode is ductile for ATIG welding with larger fracture edges and is brittle in the case of conventional TIG welding.

Go to article

Bibliography

  1.  S. Jannet, P.K. Mathews, and R. Raja, “Comparative investigation of friction stir welding and fusion welding of 6061T6 – 5083 O aluminum alloy based on mechanical properties and microstructure”, Bull. Pol. Ac.: Tech. 62(4), 791‒795 (2014), doi: 10.2478/bpasts-2014-0086.
  2.  S.T. Amancio-Filho, S. Sheikhi, J.F. dos Santos, and C. Bolfarini, “Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4”, J. Mater. Process. Technol. 206. 132–142 (2008), doi: 10.1016/j.jmatprotec.2007.12.008.
  3.  P. Mukhopadhyay, “Alloy Designation, Processing, and Use of AA6XXX Series Aluminium Alloys”, ISRN Metall. 2012, 165082 (2012), doi: 10.5402/2012/165082.
  4.  B. Choudhury and M. Chandrasekaran, “Investigation on welding characteristics of aerospace materials – A review”, Mater. Today Proc. 4, 7519–7526 (2017), doi: 10.1016/j.matpr.2017.07.083.
  5.  R.R. Ambriz and V. Mayagoitia, “Welding of Aluminum Alloys”, in Welding, Brazing and Soldering, pp. 722–739, ASM International, 2018. doi: 10.31399/asm.hb.v06.a0001436.
  6. [6]  P.J. Modenesi, “The chemistry of TIG weld bead formation”, Weld. Int. 29, 771–782 (2015), doi: 10.1080/09507116.2014.932990.
  7.  A.K. Singh, V. Dey, and R.N. Rai, “Techniques to improveweld penetration in TIG welding (A review)”, Mater. Today Proc. 4, 1252–1259 (2017), doi: 10.1016/j.matpr.2017.01.145.
  8.  R.S. Vidyarthy and D.K. Dwivedi, “Activating flux tungsten inert gas welding for enhanced weld penetration”, J. Manuf. Process. 22, 211–228 (2016), doi: 10.1016/j.jmapro.2016.03.012.
  9.  R.S. Vidyarthy and D.K. Dwivedi, “Microstructural and mechanical properties assessment of the P91 A-TIG weld joints”, J. Manuf. Process. 31, 523–535 (2018), doi: 10.1016/j.jmapro.2017.12.012.
  10.  K.D. Ramkumar, V. Varma, M. Prasad, N.D. Rajan, and N.S. Shanmugam, “Effect of activated flux on penetration depth, microstructure and mechanical properties of Ti-6Al-4V TIG welds”, J. Mater. Process. Technol. 261, 233–241 (2018), doi: 10.1016/j.jmatprotec.2018.06.024.
  11.  H. Kumar and N.K. Singh, “Performance of activated TIG welding in 304 austenitic stainless steel welds”, Mater. Today Proc. 4, 9914–9918 (2017), doi: 10.1016/j.matpr.2017.06.293.
  12.  R.S. Vidyarthy, A. Kulkarni, and D.K. Dwivedi, “Study of microstructure and mechanical property relationships of A-TIG welded P91–316L dissimilar steel joint”, Mater. Sci. Eng. A. 695, 249–257 (2017), doi: 10.1016/j.msea.2017.04.038.
  13.  E.R. Imam Fauzi, M.S. Che Jamil, Z. Samad, and P. Muangjunburee, “Microstructure analysis and mechanical characteristics of tungsten inert gas and metal inert gas welded AA6082-T6 tubular joint: A comparative study”, Trans. Nonferrous Met. Soc. China (English Ed.) 27, 17–24 (2017), doi: 10.1016/S1003-6326(17)60003-7.
  14.  R.S. Coelho, A. Kostka, J.F. dos Santos, and A. Kaysser-Pyzalla, “Friction-stir dissimilar welding of aluminium alloy to high strength steels: Mechanical properties and their relation to microstructure”, Mater. Sci. Eng. A. 556, 175–183 (2012), doi: 10.1016/j.msea.2012.06.076.
  15.  A.S. Zoeram, S.H.M. Anijdan, H.R. Jafarian, and T. Bhattacharjee, “Welding parameters analysis and microstructural evolution of dissimilar joints in Al/Bronze processed by friction stir welding and their effect on engineering tensile behavior”, Mater. Sci. Eng. A. 687, 288–297, (2017). doi: 10.1016/j.msea.2017.01.071.
  16.  K.H. Dhandha and V.J. Badheka, “Effect of activatingfluxes on weld bead morphology of P91 steelbead-on-platewelds by flux assisted tungsteninert gas welding process”, J. Manuf. Process. 17, 48–57 (2015), doi: 10.1016/j.jmapro.2014.10.004.
  17.  A. Krajewski, W. Włosiński, T. Chmielewski, and P. Kołodziejczak, “Ultrasonic-vibration assisted arc-welding of aluminum alloys”, Bull. Pol. Ac.: Tech. 60(4), 841‒852 (2012), doi: 10.2478/v10175-012-0098-2.
  18.  H.S. Patil and S.N. Soman, “Effect of tool geometry and welding speed on mechanical properties and microstructure of friction stir welded joints of aluminum alloys AA6082-T6”, Arch. Mech. Eng. 61, 455‒468 (2014), doi: 10.2478/meceng-2014-0026.
Go to article

Authors and Affiliations

Rajiv Kumar
1
S.C. Vettivel
2
Harmesh Kumar Kansal
1

  1. Department of Mechanical Engineering, UIET, Panjab University, Chandigarh, India
  2. Department of Mechanical Engineering, Chandigarh College of Engineering and Technology (Degree Wing), Chandigarh, India
Download PDF Download RIS Download Bibtex

Abstract

In this work, a comparative study on the ballistic behaviour of friction stir processed AL6061 targets had been made. Base Metal AL6061 (BM) plates with 25 mm thickness were friction stir processed by adding Multi Walled Carbon Nano Tubes (MWCNT) and Graphene (G), producing AL6061-MWCNT and AL6061-G surface composites. Optical microscopy and microhardness test on BM, AL6061-MWCNT and AL6061-G samples were performed as per the standard procedure. It was noticed that uniform dispersion of ceramic particles and refined grains were obtained for the friction stir processed surface composites. From the microhardness test, it was perceived that friction stir processing had induced strengthening of surface composites, hence increasing the microhardness of AL6061-MWCNT and AL6061-G by ~60.3% and ~73.6% respectively. Also, ballistic experiments were conducted at 680±10 m/s by impacting Ø7.62×51 mm projectiles. AL6063 backing plates were placed to compare the ballistic behaviours AL6061-MWCNT and AL6061-G targets by depth of penetration. It was noted that the depth of penetration of AL6061-MWCNT and AL6061-G targets were 37.81% and 65.84% lesser than the BM target. Further, from the results of Post ballistic microscopy it was observed that the microstructure near and away from the penetration channel edge looks unchanged in BM target. However, the AL6061-MWCNT and AL6061-G targets showed considerable change in their morphology, by forming Adiabatic Shear Bands.
Go to article

Authors and Affiliations

U. Magarajan
1
ORCID: ORCID
S. Suresh Kumar
2
ORCID: ORCID

  1. Sri Venkateswara College of Engineering, Chennai, India
  2. Sri Sivasubramaniya Nadar College of Engineering, Chennai, India

This page uses 'cookies'. Learn more