Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The study of the different engineering materials according to their mechanical and dynamic characteristics has become an area of research interest in recent years. Several studies have verified that the mechanical properties of the material are directly affected by the distribution and size of the particles that compose it. Such is the case of asphalt mixtures. For this reason, different digital tools have been developed in order to be able to detect the structural components of the elements in a precise, clear and efficient manner. In this work, a segmentation model is developed for different types of dense-graded asphalt mixtures with grain sizes from 9.5 mm to 0.0075 mm, using sieve size reconstruction of the laboratory production curve. The laboratory curve is used to validate the particles detection model that uses morphological operations for elements separation. All this with the objective of developing a versatile tool for the analysis and study of pavement structures in a non-destructive test. The results show that the model presented in this work is able to segment elements with an area greater than 0.0324 mm2 and reproduce the sieve size curves of the mixtures with a high percentage of precision.

Go to article

Authors and Affiliations

O.J. Reyes-Ortiz
M. Mejía
J.S. Useche-Castelblanco
Download PDF Download RIS Download Bibtex

Abstract

In this article, the authors focused on the widely used aluminium extrusion technology, where the die quality and durability are the essential factors. In this study, detailed solutions in the three-key area have been presented. First is applying marking technology, where a laser technique was proposed as a consistent light source of high power in a selected, narrow spectral range. In the second, an automated and reliable identification method of alphanumeric characters was investigated using an advanced machine vision system and digital image processing adopted to the industrial conditions. Third, a proposed concept of online tool management was introduced as an efficient process for properly planning the production process, cost estimation and risk assessment. In this research, the authors pay attention to the designed vision system’s speed, reliability, and mobility. This leads to the practical, industrial application of the proposed solutions, where the influence of external factors is not negligible.
Go to article

Authors and Affiliations

S. Świłło
1
ORCID: ORCID
R. Cacko
1
ORCID: ORCID

  1. Warsaw University of Technology, Metal Forming and Foundry, Faculty of Mechanical and Industrial Engineering, 85 Narbutta Str., 02-525, Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Present paper is a continuation of works on evaluation of red, green, blue (RGB) to hue, saturation, intensity (HSI) colour space transformation in regard to digital image processing application in optical measurements methods. HSI colour space seems to be the most suitable domain for engineering applications due to its immunity to non-uniform lightning. Previous stages referred to the analysis of various RGB to HSI colour space transformations equivalence and programming platform configuration influence on the algorithms execution. The main purpose of this step is to understand the influence of computer processor architecture on the computing time, since analysis of images requires considerable computer resources. The technical development of computer components is very fast and selection of particular processor architecture can be an advantage for fastening the image analysis and then the measurements results. In this paper the colour space transformation algorithms, their complexity and execution time are discussed. The most common algorithms were compared with the authors own one. Computing time was considered as the main criterion taking into account a technical advancement of two computer processor architectures. It was shown that proposed algorithm was characterized by shorter execution time than in reported previously results.

Go to article

Authors and Affiliations

Andrzej Ziemba
Elżbieta Fornalik-Wajs
Download PDF Download RIS Download Bibtex

Abstract

The article presents a new technique for measuring paper deformation in unidirectional tensile tests, based on recording and analysis of a series of specimen images. The proposed technique differs from the DIC-based deformation measurement in that the cross-correlation of image data has been replaced with linear filtering. For this purpose, a regular grid of markers is printed on the sample. Filtering the image creates local maxima in the places where markers occur. The developed algorithm finds their location with sub-pixel accuracy. Printing a grid of markers on tested paper and use of reference objects visible in the same image as the paper sample, freed from the need to mechanically connect the camera and the universal testing machine and from the necessity to electronically synchronize their work. The obtained deformation distributions and Poisson’s ratios are in accordance with the literature data which confirms the correctness of the developed measurement technique.
Go to article

Bibliography

[1] Polish Committee for Standardization. (2010). Paper and cardboard – Determination of tensile properties – Part 2: Test at constant tensile speed (20 mm / min) (ISO Standard No. PN-EN ISO 1924-2). (in Polish)
[2] Laermann, K. H. (Eds.). (2000). Optical Methods in Experimental Solid Mechanics. Springer. https://doi.org/10.1007/978-3-7091-2586-1
[3] Zhu, C., Wang, H., Kaufmann, K., & Vecchio, K. S. (2020). A computer vision approach to study surface deformation of materials. Measurement Science and Technology, 31(5), 055602. https://doi.org/10.1088/1361-6501/ab65d9
[4] Sutton, M. A. (2008). Digital Image Correlation for Shape and Deformation Measurements. In: Sharpe, W. (Eds.). Springer Handbook of Experimental Solid Mechanics. Springer Handbooks (pp. 565-600). Springer. https://doi.org/10.1007/978-0-387-30877-7_20
[5] Sutton, M. A., Orteu, J. J., & Schreier, H. (2009). Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer Science & Business Media. https://doi.org/10.1007/978-0-387-78747-3
[6] Khoo, S. W., Karuppanan, S., & Tan, C. S. (2016). A review of surface deformation and strain measurement using two-dimensional digital image correlation. Metrology and Measurement Systems, 23(3), pp. 461–480. https://doi.org/10.1515/mms-2016-0028
[7] Debella-Gilo, M., & Kääb, A. (2010). Sub-pixel Precision Image Matching for Displacement Measurement of Mass Movements Using Normalised Cross-Correlation. ISPRS TC VII Symposium – 100 Years ISPRS, Austria, XXXVIII, Part 7B.
[8] White, D. J., Take, W. A., & Bolton, M. D. (2003). Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique, 53(7), 619–631. https://doi.org/10.1680/geot.2003.53.7.619
[9] Take, W. A. (2015). Thirty-Sixth Canadian Geotechnical Colloquium: Advances in visualization of geotechnical processes through digital image correlation. Canadian Geotechnical Journal, 52(9), 1199–1220. https://doi.org/10.1139/cgj-2014-0080
10] Stanier, S. A., Blaber, J., Take, W. A., & White, D. J. (2016). Improved image-based deformation measurement for geotechnical applications. Canadian Geotechnical Journal, 53(5), 727–739. https://doi.org/10.1139/cgj-2015-0253
[11] Chivers, K. & Clocksin, W. (2000). Inspection of Surface Strain in Materials Using Optical Flow, In Mirmehdi, M. & Barry T., (Eds.). Proceedings of the British Machine Conference. BMVA Press. https://doi.org/10.5244/C.14.41
[12] Lyubutin, P. S. (2015). Development of optical flow computation algorithms for strain measurement of solids. Computer Optics, 39(1), 94–100. https://doi.org/10.18287/0134-2452-2015-39-1-94-100
[13] Hartmann, C., & Volk,W. (2019). Digital image correlation and optical flow analysis based on the material texture with application on high-speed deformation measurement in shear cutting. International Conference on Digital Image & Signal Processing, United Kingdom.
[14] Jiao,W., Fang, Y.,&He, G. (2008). An integrated feature -based method for sub-pixel image matching. The International Archives of the Photogrammetry, China, XXXVII, Part B1.
[15] Zwick Roell. Product Information videoXtens 2-120 HP. https://www.zwickroell.com
[16] Narita, G., Watanabe, Y., & Ishikawa, M. (2016). Dynamic projection mapping onto deforming nonrigid surface using deformable dot cluster marker. IEEE Transactions on Visualization and Computer Graphics, 23(3), 1235–1248. https://doi.org/10.1109/TVCG.2016.2592910
[17] Mishra, S. R., Mohapatra, S. R., Sudarsanan, N., Rajagopal, K., & Robinson, R. G. (2017). A simple image-based deformation measurement technique in tensile testing of geotextiles. Geosynthetics International, 24(3), 306–320. https://doi.org/10.1680/jgein.17.00003
[18] Duda, A., & Frese, U. (2018). Accurate Detection and Localization of Checkerboard Corners for Calibration. 29th British Machine Vision Conference (BMVC-29), United Kingdom. https://bmvc2018.org/contents/papers/0508.pdf
[19] Jones, A. R. (1968). An Experimental Investigation of the In-Plane Elastic Moduli of Paper. Tappi, 51(5), 203–209.
[20] Szewczyk, W. (2008). New methods of assessing the load capacity of multilayer laminates of paper and cardboard. Science Notebooks Lodz University of Technology, 1027. (in Polish).
[21] Cao, X., Bi, Z.,Wei, X.,&Xie,Y. (2012). Determination of Poisson’s Ratio of Kraft Paper Using Digital Image Correlation. In: Zhang T. (Eds.). Mechanical Engineering and Technology. Advances in Intelligent and Soft Computing (pp. 51-57), 125. Springer. https://doi.org/10.1007/978-3-642-27329-2_8
Go to article

Authors and Affiliations

Paweł Pełczyński
1
Włodzimierz Szewczyk
1
Maria Bieńkowska
1

  1. Centre of Papermaking and Printing, Lodz University of Technology, 90-924 Lodz, Wolczanska 223, Poland
Download PDF Download RIS Download Bibtex

Abstract

Pea gravel is a kind of a coarse aggregate with a specific particle size used to fill the annular gap between the lining segments and the surrounding ground when tunnel construction with shield machines is performed in hard rock. The main purpose of the present study is to propose quantitative morphological indices of the pea gravel and to establish their relations with the void content of the aggregate and the compressive strength of the mixture of pea gravel and slurry (MPS). Results indicate that the pea gravel of the crushed rock generally have a larger void content than that of the river pebble, and the grain size has the highest influence on the void ratio. Elongation, roughness and angularity have moderate influences on the void ratio. The content of the oversize or undersize particles in the sample affects the void ratio of the granular assembly in a contrary way. The compressive strength of the MPS made with the river pebble is obviously smaller than that of the MPS made with the crushed rock. In the crushed rock samples, the compressive strength increases with the increase of the oversize particle content. The relations between the morphological properties and the void content, and the morphological properties and the compressive strength of the MPS are expressed as regression functions. The outcomes of this study would assist with quality assessments in TBM engineering for the selection of the pea gravel material and the prediction of the compressive strength of the MPS.
Go to article

Bibliography


[1] EFNARC. Specification and guidelines for the use of specialist products for Mechanized Tunnelling (TBM) in Soft Ground and Hard Rock. www.efnarc.org. 2005.
[2] Maidl B., Herrenknecht M., Maidl U., Wehrmeyer G. Mechanised shield tunnelling / 2nd ed. Ernst & Sohn, 2011.
[3] Pelizza S., Peila D., Borio L., Dal Negro E., Schulkins R. and Boscaro A. Analysis of the Performance of Two Component Back-filling Grout in Tunnel Boring Machines Operating under Face Pressure. Proceedings of ITAAITES World Tunnel Congress 2010: “Tunnel vision towards 2020”, Vancouver, May (2010), pp. 14–20.
[4] Maidl O. I. H. C. M. B., Schmid L., Ritz W., et al. Hardrock Tunnel Boring Machines. Ernst & Sohn, 2008. https://doi.org/10.1002/9783433600122
[5] Peila D., Luca B., Sebastiano P. The behaviour of a two-component backfilling grout used in a tunnel-boring machine. Acta Geotechnica Slovenica, 2011.
[6] Thewes M., Budach C. Grouting of the annular gap in shield tunnelling – an important factor for minimisation of settlements and production performance. Proceedings of the Ita, 2009.
[7] Henzinger M. R., Radončić N., Moritz B. A., et al. Backfill of segmental lining – State of the art, redistribution behaviour of pea gravel, possible improvements / Tübbingbettung – Stand der Technik, Umlagerungsverhalten von Perlkies, Verbesserungspotenzial. Geomechanik Und Tunnelbau. 9 (3): pp. 188–199, 2016.
[8] Lanaro F., Tolppanen P. 3D characterization of coarse aggregates. Engineering Geology. 65 (1): pp. 17–30, 2002. https://doi.org/10.1016/S0013-7952(01)00133-8
[9] Sengul Ö., Tasdemir C., Tasdemir M. A. Influence of aggregate type on mechanical behaviour of normal and high-strength concretes. ACI Mater J. 99 (6): pp. 528–533, 2002.
[10] Goble C. F., Cohen M. D. Influence of aggregate surface area on mechanical properties of mortar. ACI Mater J. 96 (6): pp. 657–662, 1999.
[11] Mehta P. K., Ezeldin A. S., Aitcin P. C. Effect of coarse aggregate on the behavior of normal and high-strength concretes. Cement Concrete and Aggregates. 13(2): p. 4, 1991. https://doi.org/10.1520/CCA10128J
[12] Cetin A., Carrasquillo R. L. High-performance concrete: influence of coarse aggregates on mechanical properties. ACI Mater J. 95 (3): pp. 252–261, 1998.
[13] Zhou F. P., Lydon F. D., Barr BIG. Effect of coarse aggregate on elastic modulus and compressive strength of high-performance concrete. Cem Concr Res. 25 (1): pp. 177–186, 1995. https://doi.org/10.1016/0008- 8846(94)00125-I
[14] Uddin M. T., Mahmood A. H. Effects of maximum aggregate size on upv of brick aggregate concrete. Ultrasonics. 69: pp. 129–136, 2016. https://doi.org/10.1016/j.ultras.2016.04.006
[15] Kawamoto R., Andrade J., Matsushima T. A 3-D mechanics-based particle shape index for granular materials. Mechanics Research Communications. 92: 67–73, 2018. https://doi.org/10.1016/j.mechrescom.2018.07.002
[16] Wu J., Wang L., Hou Y., et al. A digital image analysis of gravel aggregate using CT scanning technique. International Journal of Pavement Research and Technology. 11 (2): pp. 160–167, 2018. https://doi.org/10.1016/j.ijprt.2017.08.002
[17] Nikbin I. M., Beygi M. H. A., Kazemi M. T., et al. A comprehensive investigation into the effect of aging and coarse aggregate size and volume on mechanical properties of self-compacting concrete. Materials & Design. 59: pp. 199–210, 2014. https://doi.org/10.1016/j.matdes.2014.02.054
[18] Masad E., Jandhyala V. K., Dasgupta N., Somadevan N., Shashidhar N. Characterization of air void distribution in asphalt mixes using X-ray computed tomography. J Mater Civil Eng. 14 (2): pp. 122–129, 2002. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:2(122)
[19] Meddah M. S., Zitouni S., Belâabes S. Effect of content and particle size distribution of coarse aggregate on the compressive strength of concrete. Constr Build Mater. 24 (4): pp. 505–512, 2010. https://doi.org/10.1016/j.conbuildmat.2009.10.009
[20] Masad E., Button J. W. Unified imaging approach for measuring aggregate angularity and texture. Comput-Aided Civil Infrastruct Eng. 15: pp. 273–280, 2000. https://doi.org/10.1111/0885-9507.00191
[21] Caliskan S., Karihaloo B. L. Effect of surface roughness, type and size of model aggregates on the bond strength of aggregate/mortar interface. Interface Science. 12(4): pp. 361–374, 2004. https://doi.org/10.1023/B:INTS.0000042334.43266.62
[22] Zhang D., Huang X., Zhao Y. Investigation of the shape, size, angularity and surface texture properties of coarse aggregates. Constr Build Mater. 34: pp. 330–336, 2012. https://doi.org/10.1016/j.conbuildmat.2012.02.096
[23] Masad E., Muhunthan B., Shashidhar N., Harman T. Internal structure characterization of asphalt concrete using image analysis. Journal of Computing in Civil Engineering. 13 (2): pp. 88–95, 1999. https://doi.org/10.1061/(ASCE)0887-3801(1999)13:2(88)
[24] Mora C., Kwan A. Sphericity, shape factor, and convexity measurement of coarse aggregate for concrete using digital image processing. Cement & Concrete Research. 30 (3): pp. 351–358, 2000. https://doi.org/10.1016/S0008- 8846(99)00259-8
[25] Roussillon T., Piégay H., Sivignon I., Tougne L., Lavigne F. Automatic computation of pebble roundness using digital imagery and discrete geometry. Comput. Geosci. 35: pp. 1992–2000, 2009. https://doi.org/10.1016/j.cageo.2009.01.013
[26] Al-Rousan T., Masad E., Tutumluer E., Pan T. Evaluation of image analysis techniques for quantifying aggregate shape characteristics. Constr Build Mater. 21 (5): pp. 978–990, 2007. https://doi.org/10.1016/j.conbuildmat.2006.03.005
[27] Rao C., Tutumluer E., Kim I. T. Quantification of coarse aggregate angularity based on image analysis. Transport Res Rec. 1787: pp. 117–124, 2002. https://doi.org/10.3141/1787-13
[28] Drevin G. R. Computational methods for the determination of roundness of sedimentary particles. Math. Geol. 38: pp. 871–890, 2007. https://doi.org/10.1007/s11004-006-9051-y
[29] Montenegro Ríos A., Sarocchi D., Nahmad-Molinari Y., Borselli L. Form from projected shadow (FFPS): an algorithm for 3D shape analysis of sedimentary particles. Comput. Geosci. 60: pp. 98–108, 2013. https://doi.org/10.1016/j.cageo.2013.07.008
[30] Hayakawa Y., Oguchi T. Evaluation of gravel sphericity and roundness based on surface-area measurement with a laser scanner. Comput. Geosci. 31: pp. 735–741, 2005. https://doi.org/10.1016/j.cageo.2005.01.004
[31] Lin C. L., Miller J. D. 3D characterization and analysis of particle shape using X-ray microtomography (XMT). Powder Technol. 154: pp. 61–69, 2005. https://doi.org/10.1016/j.powtec.2005.04.031
[32] Zhao B., Wang J. 3D quantitative shape analysis on form, roundness, and compactness with μCT. Powder Technol. 291: pp. 262–275, 2016. https://doi.org/10.1016/j.powtec.2015.12.029
[33] Mathieu C., Hervé, Piégay, Jéro��me, Lavé, Lise V., Danang H. S., Sandy W. B., et al. Evaluating a 2d image-based computerized approach for measuring riverine pebble roundness. Geomorphology. 311: pp. 143–157, 2018. https://doi.org/10.1016/j.geomorph.2018.03.020
[34] Koohmishi M., Palassi M. Evaluation of morphological properties of railway ballast particles by image processing method. Transportation Geotechnics. 12: pp. 15–25, 2017. https://doi.org/10.1016/j.trgeo.2017.07.001
[35] Ding, X., Ma, T., Gao, W. Morphological characterization and mechanical analysis for coarse aggregate skeleton of asphalt mixture based on discrete-element modeling. Construction & Building Materials, 154 (Nov. 15): pp. 1048–1061, 2017. https://doi.org/10.1016/j.conbuildmat.2017.08.008
[36] Janoo, V. C., Bayer, J. J. The effect of aggregate angularity on base course performance. Effect of Aggregate Angularity on Base Course Performance. 2001.
[37] Jebli, M., Jamin, F., Malachanne, E., Garcia-Diaz, E., Youssoufi, M. E. Experimental characterization of mechanical properties of the cement-aggregate interface in concrete. Construction & Building Materials, 161 (Feb. 10): pp. 16–25, 2017. https://doi.org/10.1051/epjconf/201714012014
[38] Gu, X., Li, H., Wang, Z., Feng, L. Experimental study and application of mechanical properties for the interface between cobblestone aggregate and mortar in concrete – science direct. Construction and Building Materials, 46(46): pp. 156–166, 2013. https://doi.org/10.1016/j.conbuildmat.2013.04.028
[39] Koohmishi, M., Palassi, M. Evaluation of morphological properties of railway ballast particles by image processing method. Transportation Geotechnics. 12: pp. 15–25, 2017. https://doi.org/10.1016/j.trgeo.2017.07.001
[40] Siregar A. P. N., Rafiq M. I., Mulheron M. Experimental investigation of the effects of aggregate size distribution on the fracture behaviour of high strength concrete. Constr Build Mater. 150: pp. 252–259, 2017. https://doi.org/10.1016/j.conbuildmat.2017.05.142
Go to article

Authors and Affiliations

Jinliang Zhang
1
Qiuxiang Huang
2
ORCID: ORCID
Chao Hu
2
Zhiqiang Wang
1

  1. Yellow River Engineering Consulting Co., Ltd. Zhengzhou, Henan, China
  2. State Key Lab of Geohazard Prevention and Environment Protection (SKLGP), Chengdu University of Technology (CDUT), Chengdu, Sichuan, China

This page uses 'cookies'. Learn more