Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the study results of laser modification of Vanadis-6 steel after diffusion boronized. The influence of laser beam fluence on selected properties was investigated. Diffusion boronizing lead to formation the FeB and Fe2B iron borides. After laser modification the layers were consisted of: remelted zone, heat affected zone and substrate. It was found that increase of laser beam fluence have influence on increase in dimensions of laser tracks. In the thicker remelting zone, the primary dendrites and boron eutectics were detected. In the thinner remelting zone the primary carbo-borides and eutectics were observed. In obtained layers the FeB, Fe2B, Fe3B0.7C0.3 and Cr2B phases were detected. Laser remelting process caused obtained the mild microhardness gradient from the surface to the substrate. In the remelted zone was in the range from 1800 HV0.1 to 1000 HV0.1. It was found that the laser beam fluence equal to 12.7 J/mm2 was most favorable. Using this value, microhardness was relatively high and homogeneous.
Go to article

Authors and Affiliations

A. Bartkowska
P. Jurči
M. Hudáková
D. Bartkowski
M. Kusý
D. Przestacki
Download PDF Download RIS Download Bibtex

Abstract

A novel laser diode based length measuring interferometer for scientific and industrial metrology is presented. Wavelength the stabilization system applied in the interferometer is based on the optical wedge interferometer. Main components of the interferometer such as: laser diode stabilization assembly, photodetection system, measuring software, air parameters compensator and base optical assemblies are described. Metrological properties of the device such as resolution, measuring range, repeatability and accuracy are characterized.

Go to article

Authors and Affiliations

Marek Dobosz
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of a thermal computational analysis of a two-dimensional laser array emitting from a surface. The array consisted of eight equispaced ridge-waveguide edge-emitting nitride diode lasers. Surface emission of light was obtained using mirrors inclined at 45°. The authors investigate how the geometrical dimensions of the array emitters and their pitch in the array affect the increase and distribution of temperature in the device. They also examine the influence on the temperature increase and distribution of the thickness of the insulating SiO2, the thickness of the gold layer forming the top contact of the laser, and the thickness of the GaN substrate, as well as the influence of the ridge-waveguide width.
Go to article

Bibliography

  1. Warren, M. E. et al. High-speed and scalable high-power VCSEL arrays and their applications. SPIE 9381, (2015). https://doi.org/10.1117/12.2080235
  2. Huang, C. Y. Challenges and advancement of blue III-Nitride vertical-cavity surface-emitting lasers. Micromachines 12, 676 (2021). https://doi.org/10.3390/mi12060676
  3. Kuramoto, M. et al. High-power GaN-based vertical-cavity surface-emitting lasers with AlInN/GaN distributed Bragg reflectors. Sci. 9, 416 (2019). https://doi.org/10.3390/app9030416
  4. Kuramoto, M. et al.Watt-class blue vertical-cavity surface-emitting laser arrays. Phys. Express 12, 091004 (2019). https://doi.org/10.7567/1882-0786/ab3aa6
  5. Liu, J. et al. GaN-based blue laser diodes with 2.2 W of light output power under continuous-wave operation. IEEE Photon. Technol. Lett. 29, 2203–2206 (2017). https://doi.org/10.1109/LPT.2017.2770169
  6. Perlin, P. et al. InGaN laser diode mini-arrays. Phys. Express 4, 062103 (2011). https://doi.org/10.1143/apex.4.062103
  7. Springthorpe, A. J. A novel double-heterostructure p-n junction Appl. Phys. Lett. 31, 524 (1977). https://doi.org/10.1063/1.89762
  8. Donnelly, J. P., Rauschenbach, K., Wang, C. A., Goodhue, W. D. & Bailey, R. J. Two-dimensional surface-emitting arrays of GaAs/AlgaAs diode lasers. SPIE 1043, Laser Diode Techno-logy and Applications (1989). https://doi.org/10.1117/12.976359
  9. Kim, J. H., Lang, R. J. & Larsson A. High‐power AlGaAs/GaAs single quantum well surface‐emitting lasers with integrated 45° beam deflectors. Phys. Lett. 57, 2048–2050 (1990). https://doi.org/10.1063/1.103937
  10. Śpiewak, P. et al. Impact of thermal crosstalk between emitters on power roll-over in nitride-based blue-violet laser bars. Sci. Technol. 32, 025008 (2017).
    https://doi.org/10.1088/1361-6641/aa513b
  11. Shackelford, J. F. & Alexander, W. CRC Materials Science and Engineering Handbook, Third Edition. (CRC Press, 2001).
    https://doi.org/10.1201/9781420038408
  12. Lide, D. R. CRC handbook of chemistry and physics: a ready-reference of chemical and physical data, 85th edition. Am. Chem. Soc. 127, 4542 (2004). https://doi.org/10.1021/ja041017a
  13. Kuc, M. & Sarzała, R. P. Modelowanie zjawisk fizycznych w krawędziowych laserach azotkowych oraz ich matrycach. (Wydawnictwo Politechniki Łódzkiej, 2016). [in Polish]
  14. Nakwaski, W. Thermal conductivity of binary, ternary, and quaternary III–V compounds. Appl/ Phys. 64, 159‒166 (1988). https://doi.org/10.1063/1.341449
  15. Sarzała, R. P., Śpiewak, P., Nakwaski, W. & Wasiak, M. Cavity designs for nitride VCSELs with dielectric DBRs operating efficiently at different temperatures. Laser Technol. 132, 106482 (2020). https://doi.org/10.1016/j.optlastec.2020.106482
  16. Karbownik, P. & Sarzała, R. Structure optimisation of short-wavelength ridge-waveguide InGaN/GaN diode lasers. Opto-Electron. Rev. 16, 27–33 (2008).
    https://doi.org/10.2478/s11772-007-0035-3
  17. Tomczyk, A., Sarzała, R. P., Czyszanowski, T., Wasiak, M. & Nakwaski, W. Fully self-consistent three-dimensional model of edge-emitting nitride diode lasers. Opto-Electron. Rev. 11, 65–75 (2003). https://www.infona.pl/resource/bwmeta1.element.baztech-article-BWA1-0002-0110
  18. Chung, D. D. L. Thermal interface materials. J. Mater. Eng. Perform. 10, 56–59 (2001). https://doi.org/10.1361/105994901770345358
  19. Khounsary, A. M., Chojnowski, D., Assoufid, L. & Worek, W. M. Thermal contact resistance across a copper-silicon interface. SPIE 3151, 45–51 (1997). https://doi.org/10.1117/12.294497
  20. Wengang, W. B., Haochung, H. K., Peicheng, K. & Shen, B. Handbook of GaN Semiconductor. 1st edition (CRC Press, 2017). https://doi.org/10.1201/9781315152011
  21. Adachi, A. Properties of Semiconductor Alloys: Group‐IV, III–V and II–VI Semiconductors. (John Wiley & Sons, Ltd., 2009). https://doi.org/10.1002/9780470744383
Go to article

Authors and Affiliations

Dominika Dąbrówka
1
ORCID: ORCID
Robert P. Sarzała
1
ORCID: ORCID
Michał Wasiak
1
ORCID: ORCID
Anna Kafar
2
ORCID: ORCID
Piotr Perlin
2
ORCID: ORCID
Kiran Saba
2
ORCID: ORCID

  1. Institute of Physics, Lodz University of Technology, 217/221 Wólczańska St., 93-005 Łódź, Poland
  2. Institute of High Pressure Physics, Polish Academy of Sciences, 29/37 Sokołowska St., 01-142 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

We developed a three-stage, amplifying, tunable diode laser system that comprises a master laser in a Littrow configuration, frequency-stabilized by dichroic atomic vapour laser lock, acousto-optic frequency shifter, injection-locked slave laser, and tapered amplifier. The slave amplifies the injected frequency-shifted master beam while suppressing (within 0.5  %) the strong dependence of its intensity on the acousto-optic frequency shifter carrier frequency, thus acting as a strongly saturated optical limiting amplifier with constant output power. The resulting beam is then amplified in a tapered amplifier. The system provides an output power above 700 mW at a wavelength of 780 nm, with a time-averaged linewidth of 0.6 MHz, and a frequency drift below 2 MHz/h. Dichroic atomic vapour laser lock enables frequency stabilization in the range of 400 MHz around D2 lines of rubidium. The mode-hop-free tuning range amounts to 2 GHz. Determined by the acousto-optic frequency shifter model used, the fine-tuning range (precision of few tens kHz) spans 70 MHz. A description of the system was presented and its performance was tested. The basic components have been designed in our laboratory.
Go to article

Bibliography

  1. Welch, D. F. A brief history of high-power semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 6, 1470–1477 (2000). https://doi.org/10.1109/2944.902203
  2. Wieman, C. E & Hollberg, L. Using diode lasers for atomic physics. Rev. Sci. Instrum. 62, 1–20 (1991). https://doi.org/10.1063/1.1142305
  3. Galbács, G.  A review of applications and experimental improvements related to diode laser atomic spectroscopy. Appl. Spectrosc. Rev. 41, 259–303 (2006) . https://doi.org/10.1080/05704920600620378
  4. Mroziewicz, B. External cavity wavelength tunable semiconductor lasers: a review. Opto-Electron. Rev. 16, 347–366 (2008). https://doi.org/10.2478/s11772-008-0045-9
  5. Nasim, H. & Jamil, Y. Recent advancements in spectroscopy using tunable diode lasers. Laser Phys. 10, 043001 (2013). https://doi.org/10.1088/1612-2011/10/4/043001
  6. MacAdam, K. B., Steinbach A. & Wieman, C. A narrow-band tunable diode laser system with grating feedback and a saturated absorption spectrometer for Cs and Rb. Am. J. Phys. 60, 1098–1111 (1992). https://doi.org/10.1119/1.16955
  7. Merimaa, M. et al. Compact external-cavity diode laser with a novel transmission Opt. Commun. 174, 175–180, (2000). https://doi.org/10.1016/S0030-4018(99)00654-9
  8. Laurila, T., Joutsenoja, T., Hernberg, R. & Kuittinen, M. Tunable external-cavity diode laser at 650 nm based on a transmission diffraction grating. Appl. Opt. 41, 5632–5637 (2002). https://doi.org/10.1364/AO.41.005632
  9. Hoppe, M. et al. Construction and characterization of external cavity diode lasers based on a microelectromechanical system device. IEEE J. Sel. Top. Quantum Electron. 25, 2700109 (2019). https://doi.org/10.1109/JSTQE.2019.2912059
  10. Hieta, T., Vainio, M., Moser, C. & Ikonen, E. External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range. Opt. Commun. 282, 3119–3123 (2009). https://doi.org/10.1016/j.optcom.2009.04.047
  11. Luvsandamdin, E. et al. Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space. Opt. Express. 22, 7790–7798 (2014). https://doi.org/10.1364/OE.22.007790
  12. Rauch, S. & Sacher, J. Compact Bragg grating stabilized ridge waveguide laser module with a power of 380 mW at 780 IEEE Photon. Technol. Lett. 27, 1737–1740 (2015). https://doi.org/10.1109/LPT.2015.2438545
  13. Allard, F., Maksimovic, I., Abgrall, M. & Laurent, Ph. Automatic system to control the operation of an extended cavity diode laser. Rev. Sci. Instrum. 75, 54–58 (2004). https://doi.org/10.1063/1.1634359
  14. Gilowski, M. et al. Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral Opt. Commun. 280, 443–447 (2007). https://doi.org/10.1016/j.optcom.2007.08.043
  15. Thompson, D. J. & Scholten, R. E. Narrow linewidth tunable external cavity diode laser using wide bandwidth Rev. Sci. Instrum 83, 023107 (2012). https://doi.org/10.1063/1.3687441
  16. Yang, W., Joshi, A., Wang, H. & Xiao, M. Simple method for frequency locking of an extended- cavity diode Appl. Opt. 43, 5547–5551 (2004). https://doi.org/10.1364/AO.43.005547
  17. Li, H. & Telle, H. R. Efficient frequency noise reduction of GaA1As semiconductor lasers by optical feedback from an external high-finesse resonator. IEEE J. Quantum Electron. 25, 257–264 (1989). https://doi.org/10.1109/3.18538
  18. Hayasaka, K. Frequency stabilization of an extended-cavity violet diode laser by resonant optical feedback. Opt. Commun. 206, 401–409 (2002). https://doi.org/10.1016/S0030- 4018(02)01446-3
  19. Vassiliev, V. V. et al. Narrow-line-width diode laser with a high-Q microsphere Opt. Comm. 158, 305–312 (1998). https://doi.org/10.1016/S0030-4018(98)00578-1
  20. Liang, W. et al. Whispering-gallery-mode-resonator-based ultranarrow linewidth external- cavity semiconductor Opt. Lett. 35, 2822–2824 (2010). https://doi.org/10.1364/OL.35.002822
  21. Ricci, et al. A compact grating-stabilized diode laser system for atomic physics. Opt. Commun. 117, 541–549 (1995). https://doi.org/10.1016/0030-4018(95)00146-Y
  22. Arnold, A. S., Wilson, J. S. & Boshier, M. G. A simple extended-cavity diode laser. Rev. Instrum. 69, 1236–1239 (1998). https://doi.org/10.1063/1.1148756
  23. Harvey, K. C. & Myatt, C.  J. External-cavity diode laser using a grazing-incidence diffraction grating. Lett. 16, 910–912 (1991). https://doi.org/10.1364/OL.16.000910
  24. Stry, S. et al. Widely tunable diffraction limited 1000 mW external cavity diode laser in Littman/Metcalf configuration for cavity ring-down spectroscopy. Appl. Phys. B 85, 365–374 (2006). https://doi.org/10.1007/s00340-006-2348-1
  25. Nilse, L., Davies, H. J. & Adams, C. S. Synchronous tuning of extended cavity diode lasers: the case for an optimum pivot point. Appl. Opt. 38, 548–553 (1999). https://doi.org/10.1364/AO.38.000548
  26. Saliba, S. D., Junker, M., Turner, L. D. & Scholten, R. E. Mode stability of external cavity diode lasers. Appl. Opt. 48, 6692–6700 (2009). https://doi.org/10.1364/AO.48.006692
  27. Petridis, C., Lindsay, I. D., Stothard, D. J. M. & Ebrahimzadeh, M. Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating. Rev. Sci. Instrum. 72, 3811– 3815 (2001). https://doi.org/10.1063/1.1405783
  28. Hult, J., Burns, I. S. & Kaminski, C. F., Wide-bandwidth mode-hop-free tuning of extended- cavity GaN diode lasers. Appl. Opt. 44, 3675–3685 (2005). https://doi.org/10.1364/AO.44.003675
  29. Vassiliev, V. V., Zibrov, S. A. & Velichansky, V. L. Compact extended-cavity diode laser for atomic spectroscopy and metrology. Rev. Sci. Instrum. 77, 013102 (2006). https://doi.org/10.1063/1.2162448
  30. Führer, T., Stang, D. & Walther, T. Actively controlled tuning of an external cavity diode laser by polarization spectroscopy. Opt. Express 17, 4991–4996 (2009). https://doi.org/10.1364/OE.17.004991
  31. Repasky,  S., Nehrir, A. R., Hawthorne, J.  T., Switzer, G. W. & Carlsten, J. L. Extending the continuous tuning range of an external-cavity diode laser. Appl. Opt. 45, 9013-9020 (2006). https://doi.org/10.1364/AO.45.009013
  32. Boshier, M. G., Berkeland, D., Hinds, E. A. & Sandoghdar, V. External-cavity frequency- stabilization of visible and infrared semiconductor lasers for high resolution spectroscopy. Comun. 85, 335–359 (1991). https://doi.org/10.1016/0030-4018(91)90490-5
  33. Dutta, S., Elliott, D. S. & Chen, Y. P. Mode-hop-free tuning over 135 GHz of external cavity diode lasers without antireflection coating. Appl. Phys. B 106, 629–633 (2012). https://doi.org/10.1007/s00340-011-4841-4
  34. Zhu, Y., Liu Z., Zhang, X., Shao, S. & Yan, H. Dynamic mode matching of internal and external cavities for enhancing the mode-hop-free synchronous tuning characteristics of an external-cavity diode laser. Appl. Phys. B 125, 217 (2019). https://doi.org/10.1007/s00340-019-7335-4
  35. Lotem, H., Pan, Z. & Dagenais, M. Tunable external cavity diode laser that incorporates a polarization half-wave plate. Appl. Opt. 31, 7530–7532 (1992). https://doi.org/10.1364/AO.31.007530
  36. Saliba, S. D. & Scholten, R. E., Linewidths below 100 kHz with external cavity diode Appl. Opt. 48, 6961–6966, (2009). https://doi.org/10.1364/AO.48.006961
  37. Genty, G., Gröhn, A., Talvitie, H., Kaivola, M. & Ludvigsen, H. Analysis of the linewidth of a grating-feedback GaAlAs laser. IEEE J. Quantum Electron. 36, 1193–1198 (2000). https://doi.org/10.1109/3.880660
  38. Loh, H. et al. Influence of grating parameters on the linewidths of external-cavity diode lasers. Appl. Opt. 45, 9191–9197 (2006). https://doi.org/10.1364/AO.45.009191
  39. Talvitie, H., Pietiläinen, A., Ludvigsen, H. & Ikonen, E. Passive frequency and intensity stabilization of extended-cavity diode lasers. Rev. Sci. Instrum. 68, 1–7 (1997). https://doi.org/10.1063/1.1147810
  40. Turner, L. D., Weber, K. P., Hawthorn, C. J. & Scholten, R. E. Frequency noise characterization of narrow linewidth diode lasers. Opt. Comm. 201, 391–397 (2002). https://doi.org/10.1016/S0030-4018(01)01689-3
  41. Bennetts, S. et al. External cavity diode lasers with 5 kHz linewidths and 200 nm tuning range at 1.55 μm. Opt. Expr. 22, 10642–10654 (2014). https://doi.org/10.1364/OE.22.010642
  42. Sahagun, D., Bolpasi, V. & von Klitzing, W. A simple and highly reliable laser system with microwave generated repumping light for cold atom experiments. Opt.Commun. 290, 110–114 (2013). https://doi.org/10.1016/j.optcom.2012.10.013
  43. Cook, E. C., Martin, P. J., Brown-Heft, T. L., Garman, J. C. & Steck, D. A. High-passive-stability diode-laser design for use in atomic-physics experiments. Rev. Sci. Instrum. 83, 043101 (2012). https://doi.org/10.1063/1.3698003
  44. Libbrecht, K. G. & Hall, J. A low-noise high-speed diode laser current controller. Rev. Sci. Instrum. 64, 2133–2135 (1993). https://doi.org/10.1063/1.1143949
  45. Lazar, J., Jedlička, P., Čip, O. & Ružička, B. Laser diode current controller with a high level of protection against electromagnetic interference. Rev. Sci. Instrum. 74, 3816–3819 (2003). https://doi.org/10.1063/1.1593783
  46. Erickson, C. J., Zijll, M. V., Doermann, G. & Durfee, D. S. An ultra-high stability, low-noise laser current driver with digital control. Rev. Sci. Instrum. 79, 073107 (2008). https://doi.org/10.1063/1.2953597
  47. Taubman, M. S. Low-noise high-performance current controllers for quantum cascade Rev. Sci. Instrum. 82, 064704 (2011). https://doi.org/10.1063/1.3600602
  48. Meyrath, T. P. An analog current controller design for laser diodes. Atom Optics Laboratory Center for Nonlinear Dynamics University of Texas at Austin, https://atomoptics-nas.uoregon.edu/ta_circuit/meyrath_laser_diode.pdf (2003), (Accessed: 30th July 2021).
  49. Madhavan Unni, P. K., Gunasekaran, M. K. & Kumar, A. ±30 μK temperature controller from 25 to 103 °C: Study and analysis. Rev. Sci. Instrum. 74, 231 (2003). https://doi.org/10.1063/1.1529299
  50. Libbrecht, K. G. & Libbrecht, A. W. A versatile thermoelectric temperature controller with 10 mK reproducibility and 100 mK absolute accuracy. Rev. Sci. Instrum. 80, 126107 (2009). https://doi.org/10.1063/1.3274204
  51. Millett-Sikking, A., Hughes, I. G., Tierney, P. & Cornish, S. L. DAVLL lineshapes in atomic rubidium. Phys. B 40, 187–198 (2007). https://doi.org/10.1088/0953-4075/40/1/017
  52. Krzemień, L. et al. Laser frequency stabilization by magnetically assisted rotation spectroscopy. Opt. Commun. 284, 1247–1253 (2011). https://doi.org/10.1016/j.optcom.2010.11.024
  53. Black, E. D. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 69, 79–87 (2001). https://doi.org/10.1119/1.1286663
  54. Appel, J., MacRae, A. & Lvovsky, A. I. A versatile digital GHz phase lock for external cavity diode Meas. Sci. Technol. 20, 055302 (2009). https://doi.org/10.1088/0957-233/20/5/055302
  55. Chéron, B., Gilles, H. Hamel, J., Moreau, O. & Sorel, H. Laser frequency stabilization using Zeeman effect. J. Physique III France 4, 401–406 (1994). (in French) https://doi.org/10.1051/jp3:1994136
  56. Corwin, K. L., Lu, Z.-T., Hand, C. F., Epstein, R. J. & Wieman, C. E. Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor. Appl. Opt. 37, 3295–3298 (1998). https://doi.org/10.1364/AO.37.003295
  57. Pustelny, S., Schultze, V., Scholtes, T. & Budker, D. Dichroic atomic vapor laser lock with multi-gigahertz stabilization range. Rev. Sci. Instrum. 87, 063107 (2016). https://doi.org/10.1063/1.4952962
  58. Wąsik, G., Gawlik, W., Zachorowski, J. & Zawadzki, W. Laser frequency stabilization by Doppler-free magnetic dichroism. Appl. Phys. B 75, 613–619 (2002).https://doi.org/10.1007/s00340-002-1041-2
  59. Harris, M. L., Cornish, S. L., Tripathi, A. & Hughes, I. G. Optimization of sub-Doppler DAVLL on the rubidium D2 line. J. Phys. B: At. Mol. Opt. Phys. 41, 085401 (2008). https://doi.org/10.1088/0953-4075/41/8/085401
  60. Marchant, A. L. et al. Off-resonance laser frequency stabilization using the Faraday Opt. Lett. 36, 64–66 (2011). https://doi.org/10.1364/OL.36.000064
  61. Walpole, J. N. Semiconductor amplifiers and lasers with tapered gain regions. Opt. Electron. 28, 623–645 (1996). https://doi.org/10.1007/BF00411298
  62. Jechow, A. et al. 1 W tunable near diffraction limited light from a broad area laser diode in an external cavity with a line width of 1.7 MHz. Opt. Commun. 277, 161–165 (2007). https://doi.org/10.1016/j.optcom.2007.05.003
  63. Bayram, S. B. & Coons, R. W. Operation of a frequency-narrowed high-beam quality broad- area laser by a passively stabilized external cavity technique. Rev. Sci. Instrum. 78, 116103 (2007). https://doi.org/10.1063/1.2804015
  64. Sell, J. F., Miller, W., Wright, D., Zhdanov, B. V. & Knize, R. J. Frequency narrowing of a 25 W broad area diode laser. Appl. Phys. Lett. 94, 051115 (2009). https://doi.org/10.1063/1.3079418
  65. Goyal, A. K., Gavrilovic, P. & Po, H. Stable single-frequency operation of a high-power external cavity tapered diode laser at 780 nm. Appl. Phys. Lett. 71, 1296–1298 (1997). https://doi.org/10.1063/1.119876
  66. Wakita, A. & Sugiyama, K. Single-frequency external-cavity tapered diode laser in a double- ended cavity configuration. Rev. Instrum. 71, 1–4 (2000). https://doi.org/10.1063/1.1150150
  67. Chi, M. et al. Tunable high-power narrow-linewidth semiconductor laser based on an external-cavity tapered amplifier. Opt. Express 13, 10589–10596 (2005). https://doi.org/10.1364/OPEX.13.010589
  68. Voigt, D., Schilder, E. C., Spreeuw, R. J. C. & van Linden van den Heuvell, H. B. Characterization of a high-power tapered semiconductor amplifier system. Appl. Phys. B 72, 279–284 (2001). https://doi.org/10.1007/s003400100513
  69. Lang, R. Injection locking properties of a semiconductor laser. IEEE J. Quantum. Electron. 18, 976–983 (1982). https://doi.org/10.1109/JQE.1982.1071632
  70. Blin, S. et al. Phase and spectral properties of optically injected semiconductor lasers. C. Phys. 4, 687–699 (2003). https://doi.org/10.1016/S1631-0705(03)00083-5
  71. Shvarchuck, I., Dieckmann, K., Zielonkowski, M. & Walraven, J. T. M. Broad-area diode-laser system for a rubidium Bose−Einstein condensation experiment. Appl. Phys. B 71, 475–480 (2000). https://doi.org/10.1007/s003400000395
  72. Sasaki, K., Yoneyama, T., Nakamura, T., Sato, S. & Takeyama, A. Semiconductor laser based, injection locking maintaining broad linewidth generated by a direct current modulation of a master laser. Sci. Instrum. 77, 096107 (2006). https://doi.org/10.1063/1.2349595
  73. Wilson, A. C., Sharpe, J. C., McKenzie, C. R., Manson, P. J. & Warrington, D. M. Narrow- linewidth master-oscillator power amplifier based on a semiconductor tapered amplifier. Appl. Opt. 37, 4871–4975 (1998). https://doi.org/10.1364/AO.37.004871
  74. Nyman, R. A. et al. Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments. Rev. Sci. Instrum. 77, 033105 (2006). https://doi.org/10.1063/1.2186809
  75. Xiong, Y., Murphy, S., Carlsten, J. L. & Repasky, K. Design and characteristics of a tapered amplifier diode system by seeding with continuous-wave and mode-locked external cavity diode laser. Opt. Eng. 45, 124205 (2006). https://doi.org/10.1117/1.2404925
  76. Bolpasi, V. & von Klitzing, W. Double-pass tapered amplifier diode laser with an output power of 1 W for an injection power of only 200 μw. Rev. Sci. Instrum. 81, 113108 (2010). https://doi.org/10.1063/1.3501966
  77. Kangara, J. C. B. et al. Design and construction of cost-effective tapered amplifier systems for laser cooling and trapping experiments. Am. J. Phys. 82, 805–817 (2014). https://doi.org/10.1119/1.4867376
  78. Hawthorn, C. J. Weber, K. P. & Scholten, R. E. Littrow configuration tunable external cavity diode laser with fixed direction output beam. Rev. Sci. Instrum. 72, 4477–4479 (2001). https://doi.org/10.1063/1.1419217
  79. Kowalski, K. DLC 300 Laser Controller. Operating Manual. Institute of Physics PAS. http://info.ifpan.edu.pl/ON-2/on22/MOT/current_controller.html (Accessed: 30th July 2021)
  80. Kowalski, K. LTC302 Temperature Controller. Operating Manual. Institute of Physics PAS. http://info.ifpan.edu.pl/ON-2/on22/MOT/temperature_controller.html (Accessed: 30th July 2021)
  81. Yashchuk, V. V., Budker, D. & Davis, J. R. Laser frequency stabilization using linear magneto- optics. Rev. Sci. Instrum. 71, 341–346 (2000). https://doi.org/10.1063/1.1150205
  82. Beverini N., Maccioni, E., Marsili, P., Ruffini, A. & Sorrentino. F. Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell. Appl. Phys. B 73, 133– 138 (2001). https://doi.org/10.1007/s003400100618
  83. Donley, E. A., Heavner, T. P., Levi, F., Tataw, M. O. & Jefferts, S. R. Double-pass acousto-optic modulator Rev. Sci. Instrum. 76, 063112 (2005). https://doi.org/10.1063/1.1930095
  84. de Carlos-López, E., López, J. M., López, S., Espinosa, M. G. & Lizama, L. A. Note: Laser frequency shifting by using two novel triple-pass acousto-optic modulator configurations. Rev. Instrum. 83, 116102 (2012). https://doi.org/10.1063/1.4758998
  85. Buchkremer, F. B. J., Dumke, R., Buggle, Ch., Birkl, G. & Termer, W. Low-cost setup for generation of 3 GHz frequency difference phase-locked laser light. Rev. Sci. Instrum. 71, 3306–3308 (2000). https://doi.org/10.1063/1.1287633
  86. Yun, P., Tan, B., Deng, W. & Gu, S. High coherent bi-chromatic laser with gigahertz splitting produced by the high diffraction orders of acousto-optic modulator used for coherent population trapping Rev. Sci. Instrum. 82, 123104 (2011). https://doi.org/10.1063/1.3665986
  87. Gunawardena, M., Hess, P., W. Strait, J. & Majumder, P. K. A frequency stabilization technique for diode lasers based on frequency-shifted beams from an acousto-optic modulator. Rev. Sci. Instrum. 79, 103110 (2008). https://doi.org/10.1063/1.3006386
  88. Liu, Z. & Slavik, R., Optical injection locking: from principle to applications. J. Lightw. Technol. 38, 43–59 (2020). https://doi.org/10.1109/JLT.2019.2945718
  89. Lau, E. K., Wong, L. J. & Wu, M. C. Enhanced modulation characteristics of optical injection- locked lasers: A tutorial. IEEE J. Sel. Top. Quantum Electron. 15, 618–633 (2009). https://doi.org/10.1109/JSTQE.2009.2014779
  90. Vainio, M., Merimaa, M. & Nyholm, K. Modulation transfer characteristics of injection-locked diode Opt. Commun. 267, 455–463 (2006). https://doi.org/10.1016/j.optcom.2006.06.054
  91. Gertsvolf, M. & Rosenbluh, M. Injection locking of a diode laser locked to a Zeeman frequency stabilized laser oscillator. Opt. Commun. 170, 269–274 (1999). https://doi.org/10.1016/S0030-4018(99)00470-8
  92. Smith, D. A. & Hughes, I. G. The role of hyperfine pumping in multilevel systems exhibiting saturated absorption. Am. J. Phys. 72, 631 (2004). https://doi.org/10.1119/1.1652039 
  93. Siddons, P., Adams, C. S., Ge, C. & Hughes, I. G Absolute absorption on rubidium D lines: comparison between theory and experiment. J. Phys. B: At. Mol. Opt. Phys. 41, 155004 (2008). https://doi.org/10.1088/0953-4075/41/15/155004
  94. Haldar, M. K., Coetzee, J. C. & Gan, K. B. Optical frequency modulation and intensity modulation suppression in a master–slave semiconductor laser system with direct modulation of the master laser. IEEE J. Quantum Electron. 41, 280–286 (2005). https://doi.org/10.1109/JQE.2004.841501
  95. Fragkos, A., Bogris, A., Syvridis, D. & Phelan, R. Amplitude noise limiting amplifier for phase encoded signals using injection locking in semiconductor lasers. J. Lightw. Technol. 30, 764–771 (2012). https://doi.org/10.1109/JLT.2011.2178816
  96. Lin, P.-Y., Shiau, B.-W., Hsiao, Y.-F. & Chen, Y.-C. Creation of arbitrary spectra with an acousto-optic modulator and an injection-locked diode laser. Rev. Sci. Instrum. 82, 083108 (2011). https://doi.org/10.1063/1.3626903
  97. Haverkamp, M., Kochem, G. & Boucke, K. Single mode fiber coupled tapered laser module with frequency stabilized spectrum. Proc. SPIE 6876, 68761D1-11 (2008). https://doi.org/10.1117/12.764801
  98. Taskova, E., Gateva, S., Alipieva, E., Kowalski, K., Głódź, M. & Szonert, J. Nonlinear Faraday rotation for optical limitation. Appl. Opt. 43, 4178–4181 (2004). https://doi.org/10.1364/AO.43.004178
  99. Deninger, A., Kraft, S., Lison, F. & Zimmermann, C. Rubidium spectroscopy with 778- to 780- nm distributed feedback laser diodes. Proc. SPIE 5722, 5722–61 (2005). https://doi.org/10.1117/12.590386
  100. Wells, S. R., Miyabe, M. & Hasegawa, S. Design, construction, and characterization of a single unit external cavity diode laser coupled tapered amplifier system for atomic physics. Opt. Laser Technol. 126, 106118 (2020). https://doi.org/10.1016/j.optlastec.2020.106118
Go to article

Authors and Affiliations

Jerzy Szonert
1
ORCID: ORCID
Małgorzata Głódź
1
ORCID: ORCID
Krzysztof Kowalski
1

  1. Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warsaw, Poland

This page uses 'cookies'. Learn more