Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an improved Virtual Flux-based Direct Power Control (VF-DPC) applied for a three-phase pulse width modulation rectifier. The proposed control approach incorporates an enhanced Virtual Flux estimator made up of a cascade second-degree low-pass filter. This latter guarantees the attenuation of the highest harmonics. The introduced control concept presented in this paper has interesting features such as reducing the current harmonics distortion. In other words, it ensures that the input current drawn from the power supply is perfectly sinusoidal whatever the state of the network voltage. The proposed method also allows to maintain the DC side capacitor voltage at the required level and assure that the input current is in phase with the respective voltage to satisfy the unity power factor function. The results obtained from the numerical simulation have proved the effectiveness of the proposed method for disturbed grid voltage and system parameters variation.

Go to article

Authors and Affiliations

Zakaria El Zaïr Laggoun
Hocine Benalla
Khalil Nebti
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a concept of a control system for a high-frequency three-phase PWM grid-tied converter (3x400 V / 50 Hz) that performs functions of a 10-kW DC power supply with voltage range of 600÷800 V and of a reactive power compensator. Simulation tests (in PLECS) allowed proper selection of semiconductor switches between fast IGBTs and silicon carbide MOSFETs. As the main criterion minimum amount of power losses in semiconductor devices was adopted. Switching frequency of at least 40 kHz was used with the aim of minimizing size of passive filters (chokes, capacitors) both on the AC side and on the DC side. Simulation results have been confirmed in experimental studies of the PWM converter, the power factor of which (inductive and capacitive) could be regulated in range from 0.7 to 1.0 with THDi of line currents below 5% and energy efficiency of approximately 98.5%. The control system was implemented in Texas Instruments TMS320F28377S microcontroller.

Go to article

Authors and Affiliations

Roman Barlik
Piotr Grzejszczak
Bernard Leszczyński
Marek Szymczak

This page uses 'cookies'. Learn more