Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 19
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The biofiltration process in the biologically activated carbon filters (BAC) is one of advanced methods of water treatment. It enables efficient elimination of dissolved organic matter and some inorganic pollutants. The production of high-quality drinking water requires an appropriate method of filter work control based on biofilm growth assessment. The first aim of the study was to assess the microbial development in beds of two BAC filters with the use of various methods. The second aim was to compare the obtained results and indicate the method which could support filter operators during routine control of biofiltration process. The study was carried out in a pilot scale on models of BAC filters during two filter runs. The analysis of Microorganisms was performed in water samples collected from different depths of the filter beds with the use of culture method (HPC), metabolica ctivity assay (with the FDA), epifluorescence microscopy – total cell count method (TCC) and biochemical method (system Vitek 2 Compact). No statistical correlation between HPC and metabolic activity assay was noted. Total bacteria number determined with the use of TCC was approx. 100–900 times higher than in the HPC method. The biochemical tests revealed the presence of several Gram-negative species. The comparison of the applied methods shows that microbial activity assay is the most useful, fast and low-cost method which may be applied additionally to the HPC method at standard water treatment plant laboratory.
Go to article

Bibliography

  1. Adam, G. & Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology & Biochemistry, 33, 7-8, pp. 943-951, DOI: 10.1016/S0038-0717(00)00244-3
  2. Battin, T.J. (1997). Assessment of fluorescein diacetate hydrolysis as a measure of total esterase activity in natural stream sediment biomass. The Science of the Total Environment, 198, 1, pp. 51-60, DOI: 10.1016/S0048-9697(97)05441-7
  3. Boulos, L., Prévost, M., Barbeau, B., Coallier, J. & Desjardins, R. (1999). LIVE/DEAD® BacLightTM: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. Journal of Microbiological Methods, 37, 1, pp.77-86, DOI: 10.1016/s0167-7012(99)00048-2
  4. Burtscher, M.M., Zibuschka, F., Mach1, R.L., Lindne, G. & Farnleitner, A.H. (2009). Heterotrophic plate count vs. in situ bacterial 16S rRNA gene amplicon profiles from drinking water reveal completely different communities with distinct spatial and temporal allocations in a distribution net. Water SA, 35, 4, pp. 495-504, DOI: 10.4314/wsa.v35i4.76809
  5. Chaukura, N., Marais, S.S., Moyo, W., Mbali, N., Thakalekoala, L.C., Ingwani, T., Mamba, B.B., Jarvis, P. & Nkambule, T.T.I. (2020). Contemporary issues on the occurrence and removal of disinfection byproducts in drinking water - A review,  Journal of En-vironmental Chemical Engineering, 8, 2, 103659, DOI: 10.1016/j.jece.2020.103659
  6. Chrzanowski, T.H., Crotty, R.D., Hubbard, J.G. & Welch, R.P. (1984). Applicability of the fluorescein diacetate method of detecting active bacteria in freshwater. Microbial Ecology, 10, 2, pp.179-185, DOI: 10.1007/BF02011424.
  7. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption.
  8. Douterelo, I., Boxall, J.B., Deines, P., Sekar, R., Fish, K.E. & Biggs, C.A. (2014). Methodological approaches for studying the microbial ecology of drinking water distribution systems, Water Research 65, pp.134-156, DOI: 0.1016/j.watres.2014.07.008
  9. Elhadidy, A.M., Van Dyke, M.I., Chen, F., Peldszus, S. & Huck, P.M. (2017). Development and application of an improved protocol to characterize biofilms in biologically active drinking water filters, Environ. Sci. Water Res. Technol., 3, pp. 249–261, DOI: 10.1039/C6EW00279J
  10. Fu, J., Lee, W.-N., Coleman, C., Nowack, K., Carter, J. & Huang, C.-H. (2017). Removal of disinfection byproduct (DBP) precursors in water by two-stage biofiltration treatment. Water Research, 123, pp. 224-235 DOI: 10.1016/j.watres.2017.06.073
  11. Garrity G.M. (ed.) (2005a) Bergey’s Manual of Systematic Bacteriology. Vol. 2 The Proteobacteria, part B The Gammaproteobacteria, Springer, New York.
  12. Garrity G.M. (ed.) (2005b) Bergey’s Manual of Systematic Bacteriology. Vol. 2 The Proteobacteria, part C The Alpha- Beta-, Delta- and Epsilonproteobacteria. Springer, New York.
  13. Hasan, H.A., Muhammad, M.H. & Ismail, N.I. (2020), A review of biological drinking water treatment technologies for contaminants removal from polluted water resources, Journal of Water Process Engineering, 33, 101035, DOI: 10.1016/j.jwpe.2019.101035
  14. Holc, D., Pruss, A., Michałkiewicz, M. & Cybulski Z. (2016). Acceleration of carbon filters activation - experiments of pilot scale technological investigations. Water supply and water quality. PZITS, Poznań, pp. 683-703 (in Polish).
  15. Holc, D., Pruss, A., Michałkiewicz, M. & Cybulski Z. (2016). Effectiveness of organic compounds removing during water treatment by filtration through a biologically active carbon filter with the identification of microorganisms. Annual Set The Environment Protection, 18, 2, pp.235-246 (in Polish).
  16. Hopkins, Z.R., Sun, M., DeWitt, J.C. & Knappe, D.R.U. (2018). Recently Detected Drinking Water Contaminants: GenX and Other Per‐and Polyfluoroalkyl Ether Acids. Journal‐American Water Works Association, 110, 7, pp. 13-28, DOI: doi.org/10.1002/awwa.1073
  17. Kaarela, O. E., Harkki, H. A., Palmroth, M. R. T. & Tuhkanen T. A. (2015). Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures, Environmental Technology, 36, 5-8, pp. 681-692, DOI: 10.1080/09593330.2014.958542
  18. Kaleta, J., Kida, M., Koszelnik, P., Papciak, D., Puszkarewicz, A. & Tchórzewska-Cieślak B. (2017). The use of activated carbons for removing organic matter from groundwater, Archives of Environmental Protection, 43, 3, pp. 32-41, DOI:10.1515/aep-2017-0031
  19. Kijowska, E., Leszczyńska, M. & Sozański, M.M. (2001): Metabolic activity test in investigation of biodegradation in biological filters, Water, Science & Technology: Water Supply, 1, 2, pp.151-158, DOI: doi.org/10.2166/ws.2001.0032
  20. Kołaski, P., Wysocka, A., Pruss, A., Lasocka-Gomuła, I., Michałkiewicz, M. & Cybulski Z. (2019). Removal of Organic Matter from Water During Rapid Filtration through a Biologically Active Carbon Filter Beds – a Full Scale Technological Investigation, Annual Set The Environment Protection, 21, 2, pp. 1136-1155
  21. Kołwzan, B. (2011). Analysis of biofilms – their formation and functioning. Environmental Pollution Control, 33, 4, pp. 3-14 (in Polish)
  22. Komorowska-Kaufman, M., Ciesielczyk, F., Pruss, A. & Jesionowski T. (2018). Effect of sedimentation time on the granulometric composition of suspended solids in the backwash water from biological activated carbon filters. E3S Web of Conferences, 44, 00072. EDP Sciences, DOI: 10.1051/e3sconf/20184400072
  23. Korotta-Gamage, S.M. & Sathasivan, A. (2017). A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process, Chemosphere, 167, pp. 120-138, DOI: 10.1016/j.chemosphere.2016.09.097
  24. Liao, X., Chen, C., Chang, C.-H., Wang, Z., Zhang, X. & Xie, S. (2012) Heterogeneity of microbial community structures inside the up-flow biological activated carbon (BAC) filters for the treatment of drinking water. Biotechnology and Bioprocess Engineering, 17, pp. 881–886, DOI: 10.1007/s12257-012-0127-x
  25. Lis, A., Pasoń, Ł. & Stępniak, L. (2016). Review of Methods Used to Indication of Biological Carbon Filters Activity. Engineering and Protection of Environment, 19, 3, pp. 413-425, DOI: 10.17512/ios.2016.3.11 (in Polish)
  26. Mądrecka, B., Komorowska-Kaufman, M., Pruss, A. & Holc D. (2018). Metabolic activity tests in organic matter biodegradation studies in biologically active carbon filter beds. Water Supply and Wastewater Disposal, Politechnika Lubelska, 163-177.
  27. Oliver, J.D. (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiology Review, 34, 4, pp. 415-425, DOI: 10.1111/j.1574-6976.2009.00200.x
  28. Olszewska, M. & Łaniewska-Trokenheim, Ł. (2013) Fluorescence-based methods of cell staining in physiological state studies of bacteria. Advancements of Microbiology, 52, 4, pp. 409-418 (in Polish).
  29. Papciak D., Kaleta J., Puszkarewicz A., Tchórzewska-Cieślak B. (2016). The use of biofiltration process to remove organic matter from groundwater. Journal of Ecological Engineering, 17, 3, pp. 119–124, DOI: 10.12911/22998993/63481
  30. Pincus, D. H. (2013). Microbial identification using the bioMérieux Vitek 2 system, Encyclo-pedia of Rapid Microbiological Methods, PDA-DHI, p.1-31. (https://store.pda.org/tableofcontents/ermm_v2_ch01.pdf )
  31. Pruss, A. (2007): Contribution of Biofilm Thickness on Sand Filter Grains to Oxygen Uptake During Ammonia Nitrogen Removal. Environmental Pollution Control, 1, pp. 35-39 (in Polish).
  32. Pruss, A., Maciołek, A. & Lasocka-Gomuła I. (2009). Effect of the Biological Activity of Carbon Filter Beds on Organic Matter Removal from Water. Environmental Pollution Control, 31, pp. 31-34 (in Polish).
  33. Sadowska J. & Grajek W. (2009). Analysis of physiological state of single bacterial cell using fluorescent staining methods. Biotechnologia, 4, pp. 102-114 (in Polish).
  34. Seredyńska-Sobecka, B., Tomaszewska, M., Janus, M. & Morawski A. W. (2006). Biological activation of carbon filters. Water Research, 40, 2, pp.355-363, DOI: 10.1016/j.watres.2005.11.014
  35. Simpson D. R. (2008). Biofilm processes in biologically active carbon water purification, Water Research, 42, 12, pp. 2839-2848, DOI: 10.1016/j.watres.2008.02.025
  36. Smith, A.C. & Hussey M.A. (2016) Gram Stain Protocols, American Society for Microbiology, pp. 1-9.
  37. (https://asm.org/getattachment/5c95a063-326b-4b2f-98ce-001de9a5ece3/gram-stain-protocol-2886.pdf)
  38. Snyder, S.A., Adham, S., Redding, A.M., Cannon, F.S., DeCarolis, J., Oppenheimer, J., Wert, E.C. & Yoon, Y. (2007). Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination, 202, 1-3, pp. 156-181, DOI: 10.1016/j.desal.2005.12.052
  39. Standard Methods for the Examination of Water and Wastewater, 23’rd Edition, APHA, 2017 Washinghton
  40. Szeląg-Wasielewska, E., Joniak, T., Michałkiewicz, M., Dysarz, T. & Mądrecka, B. (2009) Bacterioplankton of the Warta River in relation to physicochemical parameters and flow rate. Ecohydrology & Hydrobiology, 9, 2-4, pp. 225-236. DOI: 10.2478/v10104-010-0008-x
  41. Szuster-Janiaczyk A. (2016). The Microbiological Evaluation of Deposits Come from Water Network on the Example of Selected Water Supply System. Annual Set The Environment Protection, 18, 2, pp. 815–827. (in Polish)
  42. van der Kooij, D. & van der Wielen, P.W.J.J. (2014). Microbial Growth in Drinking-Water Supplies. Problems, Causes, Control and Research Needs, IWA Publishing, UK
  43. Van Nevel, S., Koetzsch, S., Proctor, C. R., Besmer, M. D., Prest, E. I., Vrouwenvelder, J. S., Knezev, A., Boon, N. & Hammes F. (2017). Flow cytometric bacterial cell counts challenge conventional heterotrophic plate counts for routine microbiological drinking water monitoring. Water Research, 113, pp. 191-206. DOI: 10.1016/j.watres.2017.01.065
  44. Wagner, M., Amann, R., Lemmer, H. & Schleifer, K. (1993). Probing activated sludge with oligonucleotides specific for Proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Applied and Environmental Microbiology, 59, 5, pp. 1520-1525, DOI: 10.1128/AEM.59.5.1520-1525.1993
  45. WHO (2003). Expert consensus. In: Bartram J., Cotruvo J.A., Exner M., Fricker C.R., Glasmacher A. (Eds.) Heterotrophic plate counts and drinking-water safety-the significance of HPCs for Water quality and human health. IWA Publishing on behalf of the World Health Organisation, London.
  46. Zamule, S.M., Dupre, C.E., Mendola, M.L., Widmer, J., Shebert, J.A., Roote, C.E. & Das P. (2021). Bioremediation potential of select bacterial species for the neonicotinoid insecticides, thiamethoxam and imidacloprid. Ecotoxicology and Environmental Safety 209, 111814; DOI: 10.1016/j.ecoenv.2020.111814
  47. Zhang, S., Gitungo, S.W., Axe, L., Raczko, R.F. & Dyksen, J.E. (2017). Biologically active filters – an advanced water treatment process for contaminants of emerging concern. Water Research, 114, pp. 31-41, DOI: 10.1016/j.watres.2017.02.014
  48. Ziglio, G., Andreottola, G., Barbesti, S., Boschetti, G., Bruni, L., Foladori, P. & Villa, R. (2002). Assessment of activated sludge viability with flow cytometry. Water Research, 36, 2, pp. 460-468, DOI: 10.1016/s0043-1354(01)00228-7
Go to article

Authors and Affiliations

Dorota Holc
1
ORCID: ORCID
Beata Mądrecka-Witkowska
1
ORCID: ORCID
Małgorzata Komorowska-Kaufman
1
ORCID: ORCID
Elżbieta Szeląg-Wasielewska
2
Alina Pruss
1
ORCID: ORCID
Zefiryn Cybulski
3

  1. Poznan University of Technology, Institute of Environmental Engineering and Building Installations, Poland
  2. Adam Mickiewicz University in Poznań, Faculty of Biology, Department of Water Protection, Poland
  3. Greater Poland Cancer Center, Microbiology Laboratory, Poland
Download PDF Download RIS Download Bibtex

Abstract

Water supply of Riga City uses water from the river Daugava, lakes Baltezers as well as deep well groundwater as drinking water. Due to chlorination of drinking water before use, inhabitants health may be at risk due to trihalornethanes and some organic pollutants. The objective of this study was to determine the level of pollution of drinking water and possible health risk. Pollutants were determined with previous solid phase microextraction (on fibre coated with polidirnethylsilox ane) or pentane extraction of chemical substances by use of gas chromatography and for benzo(a)pyrene by spectrofluorimetry The summary concentration of thrihalornethanes (bromoform, chloroform, bromodichlorornethane, dibromochloromethane) ranged from 3.4 ug/drn' to 304.4 etg/dm3 (maximum allowable concentration - MAC 100 μg/dm-' according to water standards in Latvia), summary lrichloroethene and tetrachloroethene occurred in the concentration from I .O ug/drn' to 13.4 ug/dm' (MAC = I O ug/drri') The level of aromatic hydrocarbons benzene and toluene was below 0.2 ug/drrr' (MAC = I μg/dm'). The concentration of benzo(a)pyrenc was below 0.002 ug/drrr' (MAC= O.Ol ug/drrr'). Fluctuations of concentration were found to depend on the season and place of sampling. The results confirmed an occurrence of risk due lo the impact of trihalomethanes to health. Therefore, water ozonation has been planed to replace chlorination with ozonation in Riga City.
Go to article

Authors and Affiliations

Marite Bake
Silvija Pastare
Una Zilbere
lnese Pastare
Download PDF Download RIS Download Bibtex

Abstract

The present study aimed to assess groundwater quality according to the water quality index (WQI) in Ali Al- Gharbi district of the Maysan Governorate in eastern Iraq. For this purpose, 10 physical parameters such as pH, total hardness ( TH), magnesium (Mg2+), calcium (Ca2+), potassium (K+), sodium (Na+), sulphate (SO42–), chloride (Cl–), nitrate (NO3–), and total dissolved solids ( TDSs) were examined since 2019 from 16 different locations (viz. wells). The analysis results indicated that 18.75% of the water samples were of good quality, 56.25% of them had low quality, and 25% of such samples were very poor. The WQI also varied from 69.67 and 297.6. Therefore, prior to water use, there is a dire need for some treatments, as protecting this district from pollution is significant.
Go to article

Authors and Affiliations

Sarteel Hamid Enad Al-Shammary
1
ORCID: ORCID
Sattar Obaid Maiws Al-Mayyahi
1

  1. Wasit University, College of Science, Department of Geology, Al-Kut city, Wasit Province, Iraq
Download PDF Download RIS Download Bibtex

Abstract

The work is an attempt to assess piped water quality in four counties located in east central Poland. Piped water was analysed for three successive years in each county. Water samples were tested for the following physical and chemical parameters: turbidity, colour, conductivity, taste, odour, pH, nitrates (III), nitrates (V), iron and manganese. They were compared with the current standard values. Preliminary data analysis included an analysis of maximum and minimum values of physical and chemical parameters, and it revealed that turbidity, colour, iron and manganese contents exceeded the permissible standards in all the counties. Percentages of parameters exceedances and mean values of the exceedances were used to rank the counties in terms of water quality. The ranking was obtained by means of multidimensional comparative analysis. It was demonstrated that best quality water was supplied by Węgrów County water supply system which was followed by Mińsk Mazowiecki County. The third rank was assigned to Łosice County and the poorest quality water was found to be supplied by Siedlce County water supply system.

Go to article

Authors and Affiliations

Elżbieta Radzka
Katarzyna Rymuza
Jolanta Jankowska
Download PDF Download RIS Download Bibtex

Abstract

Groundwater quality depends on many factors, among which public water supply systems and wastewater infrastructure in built-up areas plays a very important role. Analyses of influence of designed water supply and sewage network in Maciejowa village on the ground- and surface water quality have been the main aim of the paper. A mathematical model based on deterministic description of groundwater flow and migration of pollutants has been applied. An influence of various scenarios of drinking water/wastewater system development and management on pollution loads entering water environment were simulated. Recommendations regarding the sequence of individual piping systems construction were formulated to assure the best protection of water resources.
Go to article

Authors and Affiliations

Mieczysław Chalfen
Tadeusz Molski
Katarzyna Wiącek
Download PDF Download RIS Download Bibtex

Abstract

The objective of the paper is to use life cycle assessment to compare environmental impact of different technologies used in the process of water disinfection. Two scenarios are developed for water disinfection life cycle at ZUW Raba water treatment plant: (1) historical, in which gaseous chlorine is used as a disinfectant and (2) actual, in which UV radiation and electrolytically generated sodium hypochlorite are used for that purpose. Primary data is supplemented with ecoinvent 3 database records. Environmental impact is assessed by IMPACT2002+ method and its midpoint and endpoint indicators that are calculated with the use of SimaPro 8.4 software. The focus of the assessment is on selected life cycle phases: disinfection process itself and the water distribution process that follows. The assessment uses the data on flows and emissions streams as observed in the Raba plant. As the results of primal analysis show, a change of disinfectant results in quantitative changes in THMs and free chlorine in water supplied to the water supply network. The results of analysis confirm the higher potential of THMs formation and higher environmental impact of the combined method of UV/NaClO disinfection in distribution phase and in whole life cycle, mainly due to the increase of human toxicity factors. However, during the disinfection phase, gaseous chlorine use is more harmful for environment. But the final conclusion states that water quality indicators are not significant in the context of LCA, while both disinfection and distribution phases are concerned.

Go to article

Authors and Affiliations

Artur Jachimowski
Tomasz Nitkiewicz
Download PDF Download RIS Download Bibtex

Abstract

Chemical industries in Onitsha urban area of southeastern Nigeria have been discharging large quantities of effluents into surface streams. These streams are the primary sources of water used by poor households for domestic purposes. This study examines the effects of effluents on the physicochemical and microbiological characteristics of the recipient streams. This objective was achieved by collecting eight effluents and twenty-two water samples from control points, discharge lo-cations and exit chutes of the effluents for analysis. The results of the study characterised the effluents and their effects on the recipient streams. The effluents cause gross pollution of the streams as most of the parameters including pH, total dis-solved solids (TDS), turbidity, biological oxygen demand (BOD), chemical oxygen demand (COD), Mg, NO3, Fe, Cu, Pb, Cr, total heterotrophic count (THC) and total coliform group (TCG) returned high values that exceeded the World Health Organisation’s (WHO) benchmark from 2011 for drinking water quality. Only dissolved oxygen (DO), Na, Zn, Ca, and Na returned values lower than the WHO guideline. E. coli was found in all the samples; TCG was also high. This paper, there-fore, recommends that the effluent generating industries should treat their effluents before disposal.

Go to article

Authors and Affiliations

Michael C. Obeta
Uchenna P. Okafor
Cletus F. Nwankwo
Download PDF Download RIS Download Bibtex

Abstract

Water quality is an important criterion for evaluating the suitability of water for drinking and domestic purpose. The main objective of this study was to investigate the physicochemical characterization of groundwater for drinking water con-sumption. Ten captured sources were selected from three aquifers including the Guelma Mio-Plio-Quaternary alluvial ba-sin; the Senonian Heliopolis Neritic limestone aquifer, and the Eocene limestones of Ras El Agba-Sellaoua aquifer. The analyses concerned the periods of high water in May 2017 and low water in August 2017. Twelve parameters were deter-mined for the water samples: pH, T (°C), EC, Ca2+, Mg2+, Na+, K+, Cl–, HCO3–, SO42–, NO3–, TH (hydrotimetric degree), TAT (total alkalinity titration). The interpretation of the various analytical results allowed the determination of the chemical facies and the classification of the groundwater aquifers as follows: (i) in the alluvial layer, the gypsiferous marl substratum and the clays of the three terraces (high, medium and low) have given the water a chlorinated calcium chemical facies in the east part of the study area and travertines feeding partly alluvial layer, and have given a bicarbonated calcium water facies in the west, (ii) in the Senonian of Heliopolis limestone and Eocene carbonate formations of Ras El Agba- -Sellaoua, the chemical facies are calcium bicarbonate. Water isotopes (δ18O and δD) helped to determine the origin of groundwater. Overall, the groundwater in the area is hard and has significant to excessive mineralization. It is progressivelydegraded in the direction of flow, especially in the Guelma alluvial aquifer.

Go to article

Authors and Affiliations

Kaddour Benmarce
Kamel Khanchoul
Download PDF Download RIS Download Bibtex

Abstract

In order to evaluate the water quality of the Hauterivian groundwater in the zinc deposit of Chaabet el Hamra, Southern Setif region, Algeria, eighteen physico-chemical parameters such as pH, EC, TDS, Cl−, SO42−, HCO3−, CO32−, NO3−, Ca2+, Mg2+, Na+, K+, and heavy metals Zn, Pb, Fe, Cr, Cd, Mn were analyzed and collected from six different wells in April 2012. The studied groundwater is dominated by HCO3−, Ca2+, and Mg2+ ions. According to the World Health Organization (WHO) and Algerian standards, all groundwater samples are considered safe and fit for drinking as they fall within the permissible limits. In addition, the Schoeller diagram confirms the best quality water of the Hauterivian groundwater. Gibbs diagram show that the predominant samples fall in the rock-water interaction field, suggesting that water-rock inter-actions are the major mechanism controlling groundwater chemistry. Assessment of groundwater samples using various water quality indices such as sodium absorption ratio (SAR), soluble sodium percentage (SSP), residual sodium carbonate (RSC), magnesium hazard (MH) and Kelly ratio (KR) showed that the groundwater in the area has an excellent quality for irrigation purpose. According to Wilcox’s diagram, all groundwater samples fall in the C2S1 category, reflecting that they are suitable for irrigation.

Go to article

Authors and Affiliations

Houria Kada
Abdslem Demdoum
Download PDF Download RIS Download Bibtex

Abstract

This study aimed at evaluating water quality of groundwater wells (GWWs) in Wadi Shati, Libya, and assessing its suitability for drinking. Water samples were collected from 17 GWWs and subjected to laboratory testing for 24 physical and chemical water quality parameters (WQPs). Analysis uncovered that the recorded values of 11 WQPs were consistent with the Libyan drinking water quality standard (DWQS). These parameters were pH, temperature (T), acidity, alkalinity, electrical conductivity (EC), sodium, potassium, calcium, magnesium, zinc, and cadmium. However, values of colour and turbidity exceeded the maximum levels set by the Libyan DWQS at five out of the 17 study wells. Likewise, concentrations of chloride (Cl ), sulphate (SO 4 2−), and ammonia (NH3) violated the local DWQS in three locations, each. Additionally, concentrations of phosphate (PO 4 3−), iron, manganese, chromium, and nickel exceeded their maximum allowable concentrations according to the Libyan DWQS. The levels of these five parameters are alarming. Overall, the 17 studied GWWs suffer from varying levels of pollution that, mostly, arise from domestic and agricultural sources, e.g., septic tank seepage and agricultural drainage of agro-chemicals like fertilisers and pesticides. The results of this study emphasise that routine monitoring of groundwater resources plays a vital role in their sustainable management and stresses that water quality data are critical for characterisation of pollution, if any, and for protection of human health and ecosystem safety. Our results serve as guideline for sustainable management of water quality in the Wadi Shati District.
Go to article

Authors and Affiliations

Omar Asad Ahmad
1
ORCID: ORCID
Nabeel M. Gazzaz
2
ORCID: ORCID
Amnah Khair Alshebani
3

  1. Amman Arab University, Faculty of Engineering, Jordan Street, 11953, Amman, Jordan
  2. Jarash University, Faculty of Agriculture and Science, Jordan
  3. Sebha University, Faculty of Environmental Sciences, Libya
Download PDF Download RIS Download Bibtex

Abstract

To investigate and assess the effects of land use and its changes on concentrations of heavy metals (Pb, Zn, Cd, Cu, Mn, Ni, Fe) in the tributary of drinking water reservoir catchment, soils of different land use types (forest, arable land, meadows and pastures, residential areas), suspended sediment and bottom sediment were collected. Heavy metals were analyzed using atomic absorption spectrophotometry (AAS). The metal distribution pattern was observed, where Zn and Cd could be considered as main metal contaminants. The variation in the concentration level of Zn and Cd in studied soils showed the impact of pollution from anthropogenic activities. Also some seasonal variations were visible among the suspended sediment and bottom sediment samples which could be associated with land agricultural practices or meteorological conditions. The sediment fingerprints approach used for determining sources of the suspension in the catchment showed (Kruskal-Wallis H test, p<0.05), that only Mn and Ni were not able to be distinguished among the potential sediment sources. A multiple linear regression model described the relationship between suspended sediment and 4 types of soil samples. The results related suspended composition mostly to the samples from the residential land use. Considering the contemporary trend of observed changes in land use resulting in conversion of agricultural areas into residential and service structures these changes can be essential for the contamination of aquatic environment. This situation is a warning sign due to the rapid industrialization, urbanization and intensive agriculture in this region what can significantly affect the drinking water quality.

Go to article

Authors and Affiliations

Gabriela Zemełka
Małgorzata Kryłów
Ewa Szalińska van Overdijk
Download PDF Download RIS Download Bibtex

Abstract

Geological carbon dioxide storing should be carried out with the assumption that there are no leakages from the storage sites. However, regardless of whether the gas which is injected in leaks from the storage site or not, the carbon dioxide stored will influence the environment. In a tight storage site the carbon dioxide injected in will dissolve in the reservoir liquids (groundwater and oil) and react with the rocks of the storage formation. Dissolving CO2 in underground water will result in the change of its pH and chemism. The reactions with the rock matrix of the storage site will not only trigger changes in its mineralogical composition, but also in the petrophysical parameters, because of the precipitation and dissolution of minerals. A leakage of CO2 from its storage site can trigger off changes in the composition of soil air and groundwater, influence the development of plants, and in case of sudden and large leaks it will pose a threat for people and animals. Carbon dioxide can cause deterioration of the quality of drinking waters related to the rise in their mineralization (hardness) and the mobilization of heavymetals' cations. A higher content of this gas in soil leads to a greater acidity and negatively affects plants. A carbon dioxide concentration of ca. 20-30% is a critical value for plants above which they start to die. The influence of high concentrations of carbon dioxide on the human organism depends on the concentration of gas, exposure time and physiological factors. CO2 content in the air of up to 1.5% does not provoke any side effects in people. A concentration of over 3% has a number of negative effects, such as: higher respiratory rate, breathing difficulties, headaches, loss of consciousness. Concentrations higher than 30% lead to death after a few minutes. Underground microorganisms and fungi have a good tolerance to elevated and high concentrations of carbon dioxide. Among animals the best resistance is found in invertebrates, some rodents and birds.

Go to article

Authors and Affiliations

Barbara Uliasz-Misiak
Download PDF Download RIS Download Bibtex

Abstract

Filtration through biologically active carbon (BAC) filters is an effective method of organic matter removal during drinking water treatment. In this study, the microbial community in the initial period of filters’ operation, as well as its role in the organic matter removal were investigated. Research was carried out in a pilot scale on two BAC filters (Filter 1 and Filter 2) which were distinguished by the type of inflowing water. It was observed that the number of heterotrophic plate count bacteria and total microbial activity were significantly higher in water samples collected from Filter 2, which received an additional load of organic matter and microorganisms. Despite the differences in the values of chemical and microbiological parameters of inflowing water, the composition of the microbiome in both filters was similar. The predominant taxon was a bacterium related to Spongiibacter sp. (Gammaproteobacteria) (>50% of relative abundance). In both filters, the efficiency of organic matter removal was at the same level, and the composition and relative frequency of predicted functional pathways related to metabolism determined using PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States Software) at level 3 of KEGG (Kyoto Encyclopedia of Genes and Genomes) Orthology – were also similar. The study demonstrated that a 40-day period of filter operation after filling with virgin granular activated carbon, was sufficient to initiate biofilm development. It was proved, that during the initial stage of filter operation, microorganisms capable of biodegradation of various organic compounds, including xenobiotics like nitrotoluene, colonized the filters
Go to article

Bibliography

  1. APHA (2017). Standard Methods for the Examination of Water and Wastewater, (23st ed.) American Public Health Association, Washington DC.
  2. Chan, S., Pullerits, K., Keucken, A., Persson, K.M., Paul, C.J. & Rådström, P. (2019). Bacterial release from pipe biofilm in a full-scale drinking water distribution system, NPJ Biofilms Microbiomes, 5, 9. DOI:10.1038/s41522-019-0082-9
  3. Choi, Y.C., Li, X., Raskin, L. & Morgenroth, E. (2008). Chemisorption of oxygen onto activated carbon can enhance the stability of biological perchlorate reduction in fixed bed biofilm reactors, Water Research, 42, pp. 3425–3434. DOI:10.1016/j.watres.2008.05.004
  4. Dong, S., Liu, L., Zhang, Y. & Jiang, F. (2019). Occurrence and succession of bacterial community in O3/BAC process of drinking water treatment, International Journal of Environmental Research and Public Health, 16, 3112. DOI:10.3390/ijerph16173112
  5. Douglas, G.M., Maffei, V.J., Zaneveld, J.R., Yurgel, S.N., Brown, J.R., Taylor, C.M., Huttenhower, C. & Langille, M.G.I. (2020). PICRUSt2 for prediction of metagenome functions, Nature Biotechnology, 38, pp. 685–688. DOI:10.1038/s41587-020-0548-6
  6. Edgar, R.C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nature Methods, 10, pp. 996–998. DOI:10.1038/nmeth.2604
  7. Garrity, G.M. (Ed.) 2005. Bergey’s Manual of Systematic Bacteriology. Vol. 2 The Proteobacteria, part C, The Alpha- Beta-, Delta- and Epsilonproteobacteria, Springer, New York, pp. 1-1388. DOI:10.1007/0-387-29298-5
  8. Guo, X., Xie, C., Wang, L., Li, Q. & Wang, Y. (2019). Biodegradation of persistent environmental pollutants by Arthrobacter sp., Environmental Science and Pollution Research, 26, pp. 8429–8443. DOI:10.1007/s11356-019-04358-0
  9. Hayward, C., Ross, K.E., Brown, M.H., Bentham, R. & Whiley, H. (2022) The presence of opportunistic premise plumbing pathogens in residential buildings: a literature review, Water, 14, 1129. DOI:10.3390/w14071129
  10. Heberle, H., Meirelles, G.V., da Silva, F.R., Telles, G.P. & Minghim, R. (2015). InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams, BMC Bioinformatics, 16, 169. DOI:10.1186/s12859-015-0611-3
  11. Holc, D., Pruss, A., Michałkiewicz, M. & Cybulski, Z. (2016). Effectiveness of Organic Compounds Removing During Water Treatment by Filtration Through a Biologically Active Carbon Filter with the Identification of Microorganisms, Annual Set The Environment Protection, 18, pp. 235–246 (in Polish), available on: http://ros.edu.pl/images/roczniki/2016/No2/17_ROS_N2_V18_R2016.pdf
  12. Holc, D., Mądrecka-Witkowska, B., Komorowska-Kaufman, M., Szeląg-Wasielewska, E., Pruss, A. & Cybulski, Z. (2021). The application of different methods for microbial development assessment in pilot scale drinking water biofilters, Archives of Environmental Protection, 47, 3, pp. 37-49. DOI:10.24425/aep.2021.138462
  13. Holc, D., Pruss, A., Komorowska-Kaufman, M., Mądrecka, B. & Cybulski, Z. (2019). The sorption of organic compounds from water during technological start-up of carbon filters, E3S Web Conferences, 100, 00027. DOI:10.1051/e3sconf/201910000027
  14. IARC, Monographs on the Evaluation of Carcinogenic Risks to Humans. (2012). Some chemicals present in industrial and consumer products, Food And Drinking-Water, 101, 9-549.
  15. Jean, W.D., Yeh, Y.T., Huang, S.P., Chen, J.S. & Shieh, W.Y. (2016). Spongiibacter taiwanensis sp. nov., a marine bacterium isolated from aged seawater, International Journal of Systematic and Evolutionary Microbiology, 66, pp. 4094–4098. DOI:10.1099/ijsem.0.001316
  16. Jin, L., Ko, S.R., Ahn, C.Y., Lee, H.G. & Oh, H.M. (2016). Rhizobacter profundi sp. nov., isolated from freshwater sediment, International Journal of Systematic and Evolutionary Microbiology, 66, pp. 1926-1931. DOI:10.1099/ijsem.0.000962
  17. Kaarela, O.E., Harkki, H.A., Palmroth, M.R.T. & Tuhkanen, T.A. (2015). Bacterial diversity and active biomass in full-scale granular activated carbon filters operated at low water temperatures, Environmental Technology, 36, pp. 681-692. DOI:10.1080/09593330.2014.958542
  18. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. (2021). KEGG: Integrating viruses and cellular organisms, Nucleic Acids Research, 49, D545–D551. DOI:10.1093/nar/gkaa970
  19. Kennedy, A.M., Reinert, A.M., Knappe, D.R.U., Ferrer, I. & Summers R.S. (2015). Full- and pilot-scale GAC adsorption of organic micropollutants, Water Research, 68, pp. 238-248. DOI:10.1016/j.watres.2014.10.010
  20. Khan M.F., Jamal A., Rosy P. J., Alguno A.C., Ismail M., Khan I., Ismail, A. & Zahid, M. (2022). Eco-friendly elimination of organic pollutants from water using graphene oxide assimilated magnetic nanoparticles adsorbent, Inorganic Chemistry Communications, 139, 109422. DOI:10.1016/j.inoche.2022.109422
  21. Korotta-Gamage, S.M. & Sathasivan, A. (2017). A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process, Chemosphere, 167, pp. 120-138. DOI:10.1016/j.chemosphere.2016.09.097
  22. Langille, M.G.I., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Vega Thurber, R.L., Knight, R., Beiko, R.G. & Huttenhower, C. (2013). Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences, Nature Biotechnology, 31, pp. 814–821. DOI:10.1038/nbt.2676
  23. LaPara, T.M., Hope Wilkinson, K., Strait, J.M., Hozalski, R.M., Sadowksy, M.J &, Hamilton, M.J. (2015). The Bacterial Communities of Full-Scale Biologically Active, Granular Activated Carbon Filters Are Stable and Diverse and Potentially Contain Novel Ammonia-Oxidizing Microorganisms, Applied and Environmental Microbiology, 81, pp. 6864-6872. DOI:10.1128/AEM.01692-15
  24. Li, C., Ling, F., Zhang, M., Liu, W.T., Li, Y. & Liu, W. (2017). Characterization of bacterial community dynamics in a full-scale drinking water treatment plant, Journal of Environmental Sciences, 51, pp. 21-30. DOI:10.1016/j.jes.2016.05.042
  25. Liao, X., Chen, C., Chang, C.-H., Wang, Z., Zhang, X. & Xie, S. (2012). Heterogeneity of microbial community structures inside the up-flow biological activated carbon (BAC) filters for the treatment of drinking water. Biotechnology and Bioprocess Engineering, 17, pp. 881–886. DOI:10.1007/s12257-012-0127-x
  26. Liao, X., Chen, C., Wang, Z., Chang, C.-H., Zhang, X. & Xie, S. (2015). Bacterial community change through drinking water treatment processes, International Journal of Environmental Science and Technology, 12, pp. 1867-1874. DOI:10.1007/s13762-014-0540-0
  27. Liao, X., Chen, C., Wang, Z., Wan, R., Chang, C.-H. & Zhang, X. (2013). Changes of biomass and bacterial communities in biological activated carbon filters for drinking water treatment. Process Biochemistry, 48, pp. 312-316. DOI:10.1016/j.procbio.2012.12.016
  28. Liu, G., Zhang, Y., van der Mark, E., Magic-Knezev, A., Pinto, A., van den Bogert, B., Liu, W., van der Meer, W. & Medema, G. (2018). Assessing the origin of bacteria in tap water and distribution system in an unchlorinated drinking water system by SourceTracker using microbial community fingerprints, Water Research, 138, pp. 86-96. DOI:10.1016/j.watres.2018.03.043
  29. Ma, B., LaPara, T.M. & Hozalski, R.M. (2020). Microbiome of Drinking Water Biofilters is Influenced by Environmental Factors and Engineering Decisions but has Little Influence on the Microbiome of the Filtrate, Environmental Science & Technology, 54, pp. 11526-11535. DOI:10.1021/acs.est.0c01730
  30. Makowska, N., Philips, A., Dabert, A., Nowis, K., Trzebny, A., Koczura, R. & Mokracka, J. (2020). Metagenomic analysis of β-lactamase and carbapenemase genes in the wastewater resistome, Water Research, 170, 115277. DOI:10.1016/j.watres.2019.115277
  31. Matilainen, A., Vieno N., & Tuhkanen, T. (2006). Efficiency of the activated carbon filtration in the natural organic matter removal, Environment International, 32, pp. 324-331. DOI:10.1016/j.envint.2005.06.003
  32. Mądrecka, B., Komorowska-Kaufman, M., Pruss, A. & Holc, D. (2018). Metabolic activity tests in organic matter biodegradation studies in biologically active carbon filter beds, in: Water Supply and Wastewater Disposal, Sobczuk, H. & Kowalska, B. (Eds.), Lublin University of Technology, Lublin, pp.163-177
  33. Magic-Knezev, A., Wullings, B. & Van der Kooij, D. (2009). Polaromonas and Hydrogenophaga species are the predominant bacteria cultured from granular activated carbon filters in water treatment, Journal of Applied Microbiology, 107, pp. 1457-1467. DOI:10.1111/j.1365-2672.2009.04337.x
  34. Matsis, V. M. & Grigoropoulou, H.P. (2008). Kinetics and equilibrium of dissolved oxygen adsorption on activated carbon, Chemical Engineering Science, 63, pp. 609-621. DOI:10.1016/j.ces.2007.10.005
  35. Oh, S., Hammes, F. & Liu, W.T. (2018). Metagenomic characterization of biofilter microbial communities in a full-scale drinking water treatment plant, Water Research, 128, pp. 278-285. DOI:10.1016/j.watres.2017.10.054
  36. Papciak, D., Kaleta, J., Puszkarewicz, A. & Tchorzewska-Cieślak, B. (2016). The use of biofiltration process to remove organic matter from groundwater, Journal of Ecological Engineering, 17, pp. 119-124. DOI:10.12911/22998993/63481
  37. PN-C-04578-02:1985 Water and wastewater - Testing of oxygen demand and organic carbon content - Determination of chemical oxygen demand (COD) by the permanganate method. (in Polish)
  38. Qi, W., Li, W., Zhang, J. & Zhang, W. (2019). Effect of biological activated carbon filter depth and backwashing process on transformation of biofilm community, Frontiers of Environmental Science & Engineering, 13, 15. DOI:10.1007/s11783-019-1100-0
  39. Rosenberg, E., DeLong E.F., Lory, S., Stackebrandt, E., Thompson, F. (Eds.), (2014). The Prokaryotes. Alphaproteobacteria and Betaproteobacteria. (4rd ed.), Springer, Berlin, Heidelberg. pp. 3-1012. DOI:10.1007/978-3-642-30197-1
  40. Dos Santos, P.R. & Daniel, L.A. (2020). A review: organic matter and ammonia removal by biological activated carbon filtration for water and wastewater treatment, International Journal of Environmental Science and Technology, 17, pp. 591-606. DOI:10.1007/s13762-019-02567-1
  41. Selbes, M., Brown, J., Lauderdale, C. & Karanfil, T. (2017). Removal of Selected C‐ and N‐DBP Precursors in Biologically Active Filters, Journal ‐ American Water Works Association, 109: E73-E84. DOI:10.5942/jawwa.2017.109.0014
  42. Servais, P., Billen, G. & Bouillot, P. (1994). Biological colonization of granular activated carbon filters in drinking-water treatment, Journal of Environmental Engineering, 120, 4, pp. 888-899. DOI:10.1061/(ASCE)0733-9372(1994)120:4(888)
  43. Shirey, T.B., Thacker, R.W. & Olson, J.B. (2012). Composition and stability of bacterial communities associated with granular activated carbon and anthracite filters in a pilot scale municipal drinking water treatment facility, Journal of Water and Health, 10, pp. 244–255. DOI:10.2166/wh.2012.092
  44. Simpson, D.R. (2008). Biofilm processes in biologically active carbon water purification, Water Research, 42, pp. 2839-2848. DOI:10.1016/j.watres.2008.02.025
  45. Su, H.-C., Liu, Y.-S., Pan C.-G., Chen, J., He, L.-Y. & Ying, G.-G. (2018). Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: From drinking water source to tap water, Science of the Total Environment, 616–617, pp. 453-461. DOI:10.1016/j.scitotenv.2017.10.318
  46. Velten, S., Boller, M., Köster, O., Helbing, J., Weilenmann, H.U. & Hammes, F. (2011). Development of biomass in a drinking water granular active carbon (GAC) filter, Water Research 45, pp. 6347-6354. DOI:10.1016/j.watres.2011.09.017
  47. Vignola, M., Werner,D., Wade, M.J., Meynet, P. & Davenport, R.J. (2018). Medium shapes the microbial community of water filters with implications for effluent quality, Water Research, 129, pp. 499-508. DOI:10.1016/j.watres.2017.09.042.
  48. Waak, M.B., Hozalski, R.M., Hallé, C. & LaPara, T.M. (2019). Comparison of the microbiomes of two drinking water distribution systems - with and without residual chloramine disinfection, Microbiome, 7, 87. DOI:10.1186/s40168-019-0707-5
  49. White, C.P., Debry, R.W. & Lytle, D.A. (2012). Microbial survey of a full-scale, biologically active filter for treatment of drinking water, Applied and Environmental Microbiology, 78, pp. 6390-6394. DOI:10.1128/AEM.00308-12
  50. Yapsakli, K. & Çeçen, F. (2010). Effect of type of granular activated carbon on DOC biodegradation in biological activated carbon filters, Process Biochemistry, 45, pp. 355-362. DOI:10.1016/j.procbio.2009.10.005
Go to article

Authors and Affiliations

Beata Mądrecka-Witkowska
1
ORCID: ORCID
Małgorzata Komorowska-Kaufman
1
ORCID: ORCID
Alina Pruss
1
ORCID: ORCID
Dorota Holc
1
ORCID: ORCID
Artur Trzebny
2
ORCID: ORCID
Miroslawa Dabert
2
ORCID: ORCID

  1. Poznan University of Technology, Institute of Environmental Engineering and Building Installations, Poznań, Poland
  2. Adam Mickiewicz University in Poznań, Faculty of Biology, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Groundwater hydrochemistry of Algerian Sahara (Southwest, Algeria) was used to assess groundwater quality to de-termine its suitability for drinking and agricultural purposes. A total of 26 groundwater samples were analysed for 14 para-meters. Standards laboratory methods were used to determine physicochemical groundwater properties. This study shows that these pH, electric conductivity, total hardness, bicarbonate, and phosphate were within WHO limits. The concentration of magnesium ranging from 30.49 to 120 mg∙dm–3 with an average value of 67.21 mg∙dm–3. 38.56% of the water points analysed have a concentration lower than the value set by the WHO at 75.00 mg∙dm–3. It also showed that 70% of the points studied have potassium concentrations that exceed World Health Organization standards. Groundwater of Algerian Sahara is low in nitrogen (NO3–) and the higher concentration may result in various health risks. The result for this study showed that the water was to be found suitable for drinking purposes except for few samples. Piper diagram indicates that groundwater in Adrar belongs to chlorinated-sulphated, sodium and magnesium facies. The groundwater samples of Adrar present high salinity and low alkalinity fall into the field of C3S1 and C3S2. Based on the RSC values, all samples had values less than 1.25 and were good for irrigation.
Go to article

Authors and Affiliations

Ali Bendida
1 2
ORCID: ORCID
Mohammed Amin Kendouci
1
ORCID: ORCID
Abdellatif El-Bari Tidjani
2
ORCID: ORCID

  1. Universiy Tahri Mohammed Bechar, Faculty of Technology, BP 417, 08000 Bechar, Algeria
  2. University of Science and Technology Oran, Laboratory of Management and Water Treatment (LGTE)
Download PDF Download RIS Download Bibtex

Abstract

This work aimed to evaluate groundwater potability for the population through geochemical assessment methods on the example of aquifers in Krasnodar city. In 2016 and 2019, on the territory of Krasnodar city (Krasnodar region, Russian Federation), a detailed geochemical analysis of groundwater quality was performed based on a total of 6000 samples, 3000 samples per each year. Samples were taken from 30 wells located at depths of up to 450 m in the layers of Anthropogen and Neogene stages. Quantitative analysis of wells according to the average water quality parameters showed that in 15 wells, the water condition met the MAC (maximum allowable concentration) standards in all layers. Water abundance between the layers of the Quaternary and Cimmerian stages is seven times as different (p ≤ 0.001) towards the latter, the hardness between the same horizons is ten times as different (p ≤ 0.001) towards the Quaternary stage and three times as different (p ≤ 0.05) in terms of solid residue. Thus, the water hardness and water abundance index vary significantly between the vertical layers. A strong positive correlation between the solid residue and the hardness values (Pearson correlation 0.93, p ≤ 0.05), and a negative correlation between water abundance and solid residue values (Pearson correlation –0.83, p ≤ 0.05), as well as between the hardness and water abundance values (Pearson correlation –0.81, p ≤ 0.05) was recorded. These findings can be used for regions with similar deposits of rocks and aquifers.
Go to article

Bibliography

ARENDAL U.G. 2002. A world of salt: Total global saltwater and freshwater estimates [online]. Vital Water Graphics. [Access 25.11.2021]. Available at: https://www.grida.no/resources/5808
BELITZ K., JURGENS B.C., JOHNSON T.D. 2016. Potential corrosivity of untreated groundwater in the United States (No. 2016-5092). Scientific Investigations Report 2016-5092. US Geological Survey pp. 16. DOI 10.3133/sir20165092.
BINDAL S., KUMAR A., MALLICK J., SHASHTRI S., KUMAR P., SINGH C.K. 2020. Geochemical, topographical, and meteorological controls on groundwater arsenic contamination in Sharda River Basin of Uttar Pradesh, India. Journal of Climate Change. Vol. 6. Iss. 2 p. 71–87. DOI 10.3233/JCC200013.
BINDAL S., SINGH C.K. 2019. Predicting groundwater arsenic contam-ination: Regions at risk in highest populated state of India. Water Research. Vol. 159 p. 65–76. DOI 10.1016/j.watres.2019.04.054.
BOGAS J.A., GOMES A. 2015. Non-steady-state accelerated chloride penetration resistance of structural lightweight aggregate concrete. Cement and Concrete Composites. Vol. 60 p. 111–122. DOI 10.1016/j.cemconcomp.2015.04.001.
BRADY K.B.C., KANIA T., SMITH M.W., HORNBERGER R.J. 1998. Coal mine drainage prediction and pollution prevention in Pennsylvania. Pennsylvania Department of Environmental Protection. [Access 25.11.2021]. Available at: https://wvmdtaskforce.files.wordpress.com/2016/01/00-pbrady.pdf
COZZARELLI I.M., SKALAK K.J., KENT D.B., ENGLE M.A., BENTHEM A., MUMFORD A.C., ..., JOLLY G.D. 2017. Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota. Science of the Total Environment. Vol. 579 p. 1781–1793. DOI 10.1016/j.scitotenv.2016.11.157.
CRAVOTTA C.A., SHERROD L., GALEONE D.G., LEHMAN W.G., ACKMAN T.E., KRAMER A. 2017. Hydrological and geophysical investigation of streamflow losses and restoration strategies in an abandoned mine lands setting. Environmental and Engineering Geoscience. Vol. 23. Iss. 4 p. 243–273. DOI 10.2113/gseegeosci.23.4.243.
DEMCHENKO O.P., LARIONOVA L.V., SKLYARENKO O.В. 2018. Sanitarno- gigiyenicheskiye problemy vodnykh resursov krasnodarskogo kraya i g. Krasnodara. V: Ekologiya Rechnykh Landshaftov [Sanitary and hygienic issues of water resources in Krasnodar Krai and the city of Krasnodar. In: Ecology of river landscapes]. Ed. N.N. Mamas. Krasnodar. KubGAU p. 52–60.
DOMAGALSKI J.L., JOHNSON H.M. 2011. Subsurface transport of orthopho-sphate in five agricultural watersheds, USA. Journal of Hydrology. Vol. 409. Iss. 1–2 p. 157–171. DOI 10.1016/j.jhydrol.2011.08.014.
ELUMALAI V, NWABISA D.P., RAJMOHAN N. 2019. Evaluation of high fluoride contaminated fractured rock aquifer in South Africa – Geochemical and chemometric approaches. Chemosphere. Vol. 235 p. 1–11. DOI 10.1016/j.chemosphere.2019.06.065.
EPA 2014. Framework for human health risk assessment to inform decision making framework for human health risk assessment to inform decision making [online]. U.S. Environmental Protection Agency pp. 63. [Access 10.12.2020]. Available at: https://www.epa.gov/sites/production/files/2014-12/documents/hhra-frame-work-final-2014.pdf
HAASE K.B., KOZAR M.D., MCADOO M.A., CASILE G.C., STEFFY L., RISSER D.W. 2019. Dataset of trace dissolved hydrocarbons in surface water and groundwater in North Dakota, Pennsylvania, Virginia, and West Virginia between 2014 and 2017. Reston. U.S. Geological Survey. DOI 10.5066/P9RDPWXO.
HARKNESS J.S., DARRAH T.H., WARNER N.R., WHYTE C.J., MOORE M.T., MILLOT R., KLOPPMANN W., JACKSON R.B., VENGOSH A. 2017. The geochemistry of naturally occurring methane and saline ground-water in an area of unconventional shale gas development. Geochimica et Cosmochimica Acta. Vol. 208 p. 302–334. DOI 10.1016/j.gca.2017.03.039.
HEISIG P.M., SCOTT T.M. 2013. Occurrence of methane in groundwater of south-central New York State, 2012-systematic evaluation of a glaciated region by hydrogeologic setting. Denver, Colorado. US Department of the Interior, US Geological Survey. ISSN 2328- 0328 pp. 32.
KOCINA P. 1997. Body composition of spinal cord injured adults. Sports Medicine. Vol. 23 p. 48–60. DOI 10.2165/00007256-199723010-00005.
KOZAR M.D., MCCOY K.J., BRITTON J.Q., BLAKE JR. B.M. 2017. Hydrogeology, groundwater flow, and groundwater quality of an abandoned underground coal-mine aquifer, Elkhorn Area, West Virginia. Cheat Lake. West Virginia Geological and Economic Survey. ISSN 0363-1052 pp. 103.
LEKOMTSEV A.V., ILIUSHIN P.Y., KOROBOV G.Y. 2020. Modeling and proving of design solutions for the reconstruction of treatment facility of oil and water [online]. Periódico Tchê Química. Vol. 17. Iss. 35 p. 269–282. [Access 25.11.2021]. Available at: http://www.deboni.he.com.br/arquivos_jornal/2020/35/24_LE-KOMTSEV_pgs_269_281.pdf
Minprirody Rossii 2012. Rekomendatsii R 52.24.353-2012. Otbor prob poverkhnostnykh vod sushi i ochishchennykh stochnykh vod [Document R 52.24.353-2012. Sampling of surface water and purified waste water] [online]. Ministerstvo prirodnykh resursov i ekologii Rossiyskoy Federatsii. [Access 15.11.2021]. Available at: https://files.stroyinf.ru/Data2/1/4293792/4293 792809.htm
MOLOFSKY L.J., CONNOR J.A., WYLIE A.S., WAGNER T., FARHAT S.K. 2013. Evaluation of methane sources in groundwater in northeastern Pennsylvania. Groundwater. Vol. 51. Iss. 3 p. 333–349. DOI 10.1111/gwat.12056.
MURPHY M.A., SALVADOR A. 1999. International stratigraphic guide—an abridged version. Episodes. Vol. 22. Iss. 4 p. 255–272. [Access 10.12.2020]. Available at: https://www.idigbio.org/wiki/images/7/7f/255-271_Murphy_pdf
NAGALEVSKY Y.Y., NAGALEVSKY E.Y., CHUPRINA S.T. 2010. Meliorativno- vodokhozyaystvennyy kompleks basseyna reki Kubani [Reclama-tion and water management complex of the Kuban river basin]. Zashchita okruzhayushchey sredy v neftegazovom komplekse. Vol. 9 p. 78–84. [Access 25.11.2021]. Available at: https://www.elibrary.ru/item.asp?id=15236595
NEGI P., MOR S., RAVINDRA K. 2020. Impact of landfill leachate on the groundwater quality in three cities of North India and health risk assessment. Environment, Development and Sustainability. Vol. 22 p. 1455–1474. DOI 10.1007/s10668-018-0257-1.
NGUYEN C.K., CLARK B.N., STONE K.R., EDWARDS M.A. 2011. Role of chloride, sulfate, and alkalinity on galvanic lead corrosion. Corrosion. Vol. 67. Iss. 6 p. 065005-1–065005-9. DOI 10.5006/1.3600449.
OREM W., VARONKA M., CROSBY L., HAASE K., LOFTIN K., HLADIK M., ..., COZZARELLI I. 2017. Organic geochemistry and toxicology of a stream impacted by unconventional oil and gas wastewater disposal operations. Applied Geochemistry. Vol. 80 p. 155–167. DOI 10.1016/j.apgeochem.2017.02.016. Postanovleniye ot 28 yanvarya 2021 goda No. 2 Ob utverzhdenii sanitarnykh pravil i norm SanPiN 1.2.3685-21 “Gigiyenicheskiye normativy i trebovaniya k obespecheniyu bezopasnosti i (ili) bezvrednosti dlya cheloveka faktorov sredy obitaniya” [Regulation dated January 28, 2021 No. 2 On the approval of sanitary rules and norms SanPiN 1.2.3685-21 “Hygienic standards and requirements for ensuring the safety and (or) harmlessness of environmental factors for humans”]. Glavnyy gosudarstvennyy sanitarnyy vrach Rossiyskoy Federatsii. [Access 10.12.2020]. Available at: https://docs.cntd.ru/document/573500115?mar-ker=6540IN RAPANT S., CVEČKOVÁ V., FAJČÍKOVÁ K., DIETZOVÁ Z., STEHLÍKOVÁ B. 2017. Chemical composition of groundwater/drinking water and oncological disease mortality in Slovak Republic. Environmental Geochemistry and Health. Vol. 39. Iss. 1 p. 191–208. DOI 10.1007/s10653-016-9820-6.
RAPANT S., FAJČÍKOVÁ K., CVEČKOVÁ V., ĎURŽA A., STEHLÍKOVÁ B., SEDLÁKOVÁ D., ŽENIŠOVÁ Z. 2015. Chemical composition of groundwater and relative mortality for cardiovascular diseases in the Slovak Republic. Environmental Geochemistry and Health. Vol. 37. Iss. 4 p. 745–756. DOI 10.1007/s10653-015-9700-5.
RENOCK D., LANDIS J.D., SHARMA M. 2016. Reductive weathering of black shale and release of barium during hydraulic fracturing. Applied Geochemistry. Vol. 65 p. 73–86. DOI 10.1016/j.apgeochem.2015.11.001.
RÉVÉSZ K.M., BREEN K.J., BALDASSARE A.J., BURRUSS R.C. 2010. Carbon and hydrogen isotopic evidence for the origin of combustible gases in water-supply wells in north-central Pennsylvania. Applied Geochemistry. Vol. 25. Iss. 12 p. 1845–1859. DOI 10.1016/j.apgeochem.2010.09.011.
ROSBORG I. 2015. Drinking water minerals and mineral balance importance, health significance, safety precautions. Switzerland. Springer. ISBN 978-3-030-18034-8 pp. 175.
SILVA E.B., DA ROCHA J.R.C. 2020. Avaliação antrópica no litoral Paranaense através da determinação da concentração do íon fosfato em recursos hídricos [Anthropic evaluation in the Paraná coast through the ion phosphate concentration determination in water resources]. Periódico Tchê Química. Vol. 17. Iss. 35 p. 293– 303. [Access 25.11.2021]. Available at: http://www.deboni.he.com.br/ccount/click.php?id=929
SKEVAS T. 2020. Evaluating alternative policies to reduce pesticide groundwater pollution in Dutch arable farming. Journal of Environmental Planning and Management. Vol. 63. Iss. 4 p. 733– 750. DOI 10.1080/09640568.2019.1606618.
SVITOCH A.A. 2016. Polozheniye v razrezakh Bol’shogo Kaspiya nizhnikh granits yarusov verkhnego pliotsena i kvartera Mezhdunarodnoy stratigraficheskoy shkaly i paleogeogra-ficheskiye sobytiya [The position in the Greater Caspian Sea sections of the lower layers of the Upper Pliocene and the Quarternary of the International Stratigraphic Scale and Paleogeographical events] [online]. Byulleten’ Moskovskogo obshchestva ispytateley prirody. Otdel geologicheskiy. Vol. 91 Iss. 2–3 p. 63–73. [Access 25.11.2021]. Available at: https://cyberleninka.ru/article/n/polozhenie-v-razrezah-bol-shogo-kaspiya-nizhnih-granits-yarusov-verhnego-pliotsena-i- kvartera-mezhdunarodnoy-stratigraficheskoy-shkaly-i
TORKUNOV A.V., ORLOV A.A., CHECHEVISHNIKOV A.L., ALEKSEENKOVA A.S., BORISHPOLETS K.P., KRYLOV A. V., ..., CHERNIAVSKY S.I. 2013. Problema presnoy vody. Global’nyy kontekst politiki Rossii [The problem of fresh water. The global context of Russia’s policy] [online]. Yezhegodnik Instituta mezhdunarodnykh issledovaniy Moskovskogo gosudarstvennogo instituta mezhdu-narodnykh otnosheniy (Universiteta) Ministerstva inostrannykh del Rossiyskoy Federatsii. Vol. 1. Iss. 3 p. 8–65. [Access 10.12.2020]. Available at: https://www.elibrary.ru/item.asp? id=21134567
WHO 2007. Guidelines for drinking-water quality. Fourth edition incorporating the first addendum. Geneva. World Health Organization. ISBN 978-92-4-154995-0 pp. 631.
YAN B., STUTE M., PANETTIERI JR. R.A., ROSS J., MAILLOUX B., NEIDELL M.J., SOARES L., HOWARTH M., LIU X., SABERI P., CHILLRUD S.N. 2017. Association of groundwater constituents with topography and distance to unconventional gas wells in NE Pennsylvania. Science of the Total Environment. Vol. 577 p. 195–201. DOI 10.1016/j.scitotenv.2016.10.160.
Go to article

Authors and Affiliations

Abdugani Azimov
1
ORCID: ORCID
Larisa Nekrasova
2
ORCID: ORCID
Dmitry Gura
3 4
ORCID: ORCID

  1. M. Auezov South Kazakhstan University, Research Laboratory: Adsorption and Filtration Purification of Gases and Liquids, 5 Tauke khan Avenue, 160012 Shymkent, Kazakhstan
  2. Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical and Biological Agency, Moscow, Russia
  3. Kuban State Technological University, Department of Cadastre and Geoengineering, Kuban, Russia
  4. Kuban State Agrarian University, Department of Geodesy, Kuban, Russia
Download PDF Download RIS Download Bibtex

Abstract

Heavy metal ions (e.g. cadmium, chromium, copper, nickel, arsenic, lead, zinc) have significantly serious side effects on the human health. They can bind with proteins and enzymes, altering their activity, increasing neurotoxicity, generating reactive oxygen species (ROS), promote cellular stress and resulting in their damage. Furthermore, the size, shape and type of metal are important for considering nano- or microtoxicity. It then becomes clear that the levels of these metals in drinking water are an important issue. Herein, a new micro-mechanical sensor is proposed to detect and measure these hazardous metals. The sensor consists of a micro-beam inside a micro-container. The surface of the beam is coated with a specific protein that may bind heavy metals. The mass adsorbed is measured using the resonant frequency shift of the micro-beam. This frequency shift due to the admissible mass (which is considered acceptable for drinking water based on the World Health Organization (WHO) standard) of manganese (Mn), lead (Pb), copper (Cu) and cadmium (Cd) is investigated for the first, second and third mode, respectively. Additionally, the effects of micro-beam off-center positions inside the micro-container and the mass location are investigated.

Go to article

Authors and Affiliations

Z. Rahimi
J. Yazdani
H. Hatami
W. Sumelka
D. Baleanu
S. Najafi

This page uses 'cookies'. Learn more