Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Since a few years ago, there is an increasing interest for utilization of transfer functions (TF) as a reliable method for diagnosing of mechanical faults in transformer structure. However, this paper aims to develop the application of TF method in order to evaluate the drying quality of active part during the manufacturing process of transformer. To reach this goal, the required measurements are carried out on 50 MVA 132 KV/33 KV power transformer when active part is placed in the drying chamber. Two different features extracted from the measured TFs are then used as the inputs to artificial neural network (ANN) to give an estimate for required time in drying process. Results show that this new represented method could well forecast the required time. The results obtained from this method are valid for all the transformers which have the same design.

Go to article

Authors and Affiliations

Hormatollah Firoozi
Mehdi Bigdeli
Download PDF Download RIS Download Bibtex

Bibliography

[1] Lu, J.J., Qian, J.B., Yang, L. & Wang, H.F. (2023). Preparation and performance optimization of organosilicon slag exothermic insulating riser. Archives of Foundry Engineering. 23(1),75-82. DOI: 10.24425/afe.2023.144283.
[2] Krajewski, P.K., Zovko-Brodarac, Z. & Krajewski, W.K. (2013). Heat exchange in the system mould - Riser - Ambient. Part I: Heat exchange coefficient from mould external surface. Archives of Metallurgy and Materials. 58(3), 833-835. DOI: 10.2478/amm-2013-0081.
[3] Vaskova, I., Conev, M. & Hrubovakova, M. (2017). The influence of using different types of risers or chills on shrinkage production for different wall thickness for material EN-GJS-400-18LT. Archives of Foundry Engineering. 17(2), 131–136. DOI: 10.1515/afe-2017-0064.
[4] Sowa, L., Skrzypczak, T. & Kwiatoń, P. (2022). Numerical evaluation of the impact of riser geometry on the shrinkage defects formation in the solidifying casting. Archives of Metallurgy and Materials. 67(1), 181-187. DOI: 10.24425/amm.2022.137487.
[5] Lu, J.J., He, W., Tan, S.M., Qian, J.B. & Lu, X. (2021). Chinese Patent NO. 202110970771.3. Beijing. China National Intellectual Property Administration.
[6] Wang, E.Z., He, J.Y., Shen, J. & Yan, F.Y. (1993). Permeability of washings for vacuum evapouration-pattern casting. Special Casting & Nonferrous Alloys. 6, 1-3. DOI:10.15980/j.tzzz.1993.06.001. (in Chinese).
[7] Yu, J., Wang, D.D., Mao, L., Li, C.Y., Lu, S.D., Xu, Q.B. & Wang, W.Q. (2008). Application of LYH-3 dextrin binder in exothermic and insulating riser. Foundry Technology. 7, 873-876. (in Chinese).
[8] Zhao, X., Wang, Z.X., Zhang, W.Q., et al. (2022). The Efficacy of magnetization in enhancing flocculation and sedimentation of clay particles. Journal of Irrigation and Drainage. 41(3), 114-124. DOI: 10.13522/j.cnki.ggps.2021300. (in Chinese).
[9] Cai, Y.,Shi, B.,Liu, Z.B.,Tang, C.S. & Wang, B.J. (2005). Experimental study on effect of aggregate size on strength of filled soils. Chinese Journal of Geotechnical Engineering. 12, 1482-1486. (in Chinese).
[10] Kang, M., Wu, Y.L., Wang, W.Q. & Dai, X.Q. (1998). Effects of thermo - rheologic properties of thermo-plastic phenol resin on properties of resin-coated sand. Modern Cast Iron. 2, 11-13. (in Chinese).
[11] Dai, B.Y. (1996). Research on rheological property of phenol-formaldehyde resin for hot process. China Foundry Machinery & Technology. 5, 16-19. (in Chinese).
[12] Tang, L.L., Li, N.N. & Wu, P.X. (2008). High performance phenolic resin and its application technology. Beijing: Chemical Industry Press.
[13] Tong, L.L., Zhou, J.X., Yin, Y.J. & Li, Y.C. (2020). Effects of grain size and resin content on strength of furan resin sand. Special Casting& Nonferrous Alloys. 40(2), 139-142. DOI:10.15980/j.tzzz.2020.02.005. (in Chinese).
[14] Wang, W., Li, X.H., Gao, P.H., Zeng, S.C., Chen, B.Y., Yang, Z., Guo, Y.C. & Li, J.P. (2021). Study on optimization of gas evolution in resin sand moulds. Hot Working Technology. 50(15), 48-50. DOI:10.14158/j.cnki.1001-3814.20192900. (in Chinese).
[15] Li, C.S. (2012). Influence of properties and state of raw sand on properties of self-setting resin sand. Modern Cast Iron. 32(5), 63-68. (in Chinese).
[16] Zhu, Y.L. & Cai, Z.S. (1996). Analysis of the influence of original sand particle size on the strength of resin bonded sand. Foundry. 12, 37-38. (in Chinese).
[17] You, M. & Zheng, X.L. (1999). Theoretical analysis of the influence of original sand particle size on the strength of resin bonded sand. Foundry. 2, 42-44. (in Chinese).
Go to article

Authors and Affiliations

Jljun Lu
1
ORCID: ORCID
Zhuofan Zhong
1
ORCID: ORCID
Hu Yongluan
ORCID: ORCID
Di Wu
1
ORCID: ORCID
Huafang Wang
1
ORCID: ORCID

  1. School of Mechanical Engineering and Automation, Wuhan Textile University, China

This page uses 'cookies'. Learn more