Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 77
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The problem of outlying observations is very well-known in the surveying data processing. Outliers might have several sources, different magnitudes, and shares within the whole observation set. It means that it is not possible to propose one universal method to deal with such observations. There are two general approaches in such a context: data cleaning or robust estimation. For example, the robust M-estimation has found many practical applications. However, there are other options, such as R-estimation or the absolute M split estimation. The latter method was created to be less sensitive to outliers than the squared M split estimation (the basic variant of Msplit estimation). From the theoretical point of view, the absolute M split estimation cannot be classified as a robust method; however, it was proved that it could be used in such a context under certain conditions. The paper presents the primary comparison between that method and a conventional robust M-estimation. The results show that the absolute M split estimation predominates over the classical methods, especially when the percentage of outliers is high. Thus, that method might be used to process LiDAR data, including mismeasured points. Processing synthetic data from terrestrial laser scanning or airborne laser scanning confirms that the absolute M split / estimation can deal with outliers sufficiently.
Go to article

Authors and Affiliations

Robert Duchnowski
1
ORCID: ORCID
Patrycja Wyszkowska
1
ORCID: ORCID

  1. University of Warmia and Mazury, Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

When observations are autocorrelated, standard formulae for the estimators of variance, s2, and variance of the mean, s2 (x), are no longer adequate. They should be replaced by suitably defined estimators, s2a and s2a (x), which are unbiased given that the autocorrelation function is known. The formula for s2a was given by Bayley and Hammersley in 1946, this work provides its simple derivation. The quantity named effective number of observations neff is thoroughly discussed. It replaces the real number of observations n when describing the relationship between the variance and variance of the mean, and can be used to express s2a and s2a (x) in a simple manner. The dispersion of both estimators depends on another effective number called the effective degrees of freedom Veff. Most of the formulae discussed in this paper are scattered throughout the literature and not very well known, this work aims to promote their more widespread use. The presented algorithms represent a natural extension of the GUM formulation of type-A uncertainty for the case of autocorrelated observations.

Go to article

Authors and Affiliations

Andrzej Zięba
Download PDF Download RIS Download Bibtex

Abstract

M split estimation is a novel method developed to process observation sets that include two (or more) observation aggregations. The main objective of the method is to estimate the location parameters of each aggregation without any preliminary assumption concerning the division of the observation set into respective subsets. Up to now, two different variants of M split estimation have been derived. The first and basic variant is the squared M split estimation, which can be derived from the assumption about the normal distribution of observations. The second variant is the absolute M split estimation, which generally refers to the least absolute deviation method. The main objective of the paper is to compare both variants of M split estimation by showing similarities and differences between the methods. The main dissimilarity stems from the different influence functions, making the absolute M split estimation less sensitive to gross errors of moderate magnitude. The empirical analyses presented confirm that conclusion and show that the accuracy of the methods is similar, in general. The absolute M split estimation is more accurate than the squared M split estimation for less accurate observations. In contrast, the squared M split estimation is more accurate when the number of observations in aggregations differs much. Concerning all advantages and disadvantages of M split estimation variants, we recommend using the absolute M split estimation in most geodetic applications.
Go to article

Authors and Affiliations

Patrycja Wyszkowska
1
ORCID: ORCID
Robert Duchnowski
1
ORCID: ORCID

  1. University of Warmia and Mazury, Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

More than 6 billion square metres of new buildings are built each year. This is about 1.2 million buildings. If we translate these figures into carbon footprint (CF) generated during the construction, it will be approximately 3.7 billion tons of carbon dioxide. The contractors all over the world – also in Poland – decide to calculate the carbon footprint for various reasons, but mostly they are compelled to do so by the market. The analysis of costs and emissions of greenhouse gases for individual phases of the construction system allows implementing solutions and preventing a negative impact on the environment without increasing the construction costs. The share of each phase in the amount of produced carbon for construction and use of the building depends mainly on the used materials and applied design solutions. Hence, the materials and solutions with lesser carbon footprint should be used. It can be achieved by using natural materials or materials which do not need much energy to be produced. The author will attempt to outline this idea and present examples of integrated analysis of costs and amount of carbon footprint during the building lifecycle.
Go to article

Authors and Affiliations

Krzysztof Zima
1
ORCID: ORCID

  1. DSc., PhD., Eng., Prof. CUT, Cracow University of Technology, Faculty of Civil Engineering, ul. Warszawska 24, 31-155 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics.

Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points.

Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.

Go to article

Authors and Affiliations

Awais Khan
Wei Xie
Langwen Zhang
Ihsanullah
Download PDF Download RIS Download Bibtex

Abstract

A non-classical model of interval estimation based on the kernel density estimator is presented in this paper. This model has been compared with interval estimation algorithms of the classical (parametric) statistics assuming that the standard deviation of the population is either known or unknown. The non-classical model does not have to assume belonging of random sample to a normal distribution. A theoretical basis of the proposed model is presented as well as an example of calculation process which makes possible determining confidence intervals of the expected value of long-term noise indicators Aden and LN. The statistical analysis was carried out for 95% interval widths obtained by using each of these models. The inference of their usefulness was performed on the basis of results of non-parametric statistical tests at significance level α = 0.05. The data used to illustrate the proposed solutions and carry out the analysis were results of continuous monitoring of traffic noise recorded in 2004 in one of the main arteries of Krakow in Poland.

Go to article

Authors and Affiliations

Bartłomiej Stępień
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a novel speed estimator using Reactive Power based Model Reference Neural Learning Adaptive System (RP-MRNLAS) for sensorless indirect vector controlled induction motor drives. The Model Reference Adaptive System (MRAS) based speed estimator using simplified reactive power equations is one of the speed estimation method used for sensor-less indirect vector controlled induction motor drives. The conventional MRAS speed estimator uses PI controller for adaptation mechanism. The nonlinear mapping capability of Neural Network (NN) and the powerful learning algorithms have increased the applications of NN in power electronics and drives. This paper proposes the use of neural learning algorithm for adaptation in a reactive power technique based MRAS for speed estimation. The proposed scheme combines the advantages of simplified reactive power technique and the capability of neural learning algorithm to form a scheme named “Reactive Power based Model Reference Neural Learning Adaptive System” (RP-MRNLAS) for speed estimator in Sensorless Indirect Vector Controlled Induction Motor Drives. The proposed RP-MRNLAS is compared in terms of accuracy, integrator drift problems and stator resistance versions with the commonly used Rotor Flux based MRNLAS (RF-MRNLAS) for the same system and validated through Matlab/Simulink. The superiority of the RP-MRNLAS technique is demonstrated.

Go to article

Authors and Affiliations

K. Sedhuraman
S. Himavathi
A. Muthuramalingam
Download PDF Download RIS Download Bibtex

Abstract

The Histogram Test method is a popular technique in analog-to-digital converter (ADC) testing. The presence of additive noise in the test setup or in the ADC itself can potentially affect the accuracy of the test results. In this study, we demonstrate that additive noise causes a bias in the terminal based estimation of the gain but not in the estimation of the offset. The estimation error is determined analytically as a function of the sinusoidal stimulus signal amplitude and the noise standard deviation. We derive an exact but computationally difficult expression as well as a simpler closed form approximation that provides an upper bound of the bias of the terminal based gain. The estimators are validated numerically using a Monte Carlo procedure with simulated and experimental data.

Go to article

Authors and Affiliations

F. Alegria
Nestor Tiglao
Download PDF Download RIS Download Bibtex

Abstract

The paper addresses the problem of solving overdetermined systems of linear equations by means of methods of robust estimations, which eliminate the effect of outliers on the estimation results. The process of estimating a vector of parameters was accomplished by means of circular in structure neural networks. Formulating the problem in the aspect of a method for estimating parameters requires formulating an energy function (objective function) whose form was modified by means of a determined weighting function. In the final part of the paper the effectiveness of the methods described was evaluated in terms of controlling and diagnosing a geodetic observation system. The article is merely an introduction to a broadly understood problem of geodetic uses of robust estimators.
Go to article

Authors and Affiliations

Józef Gil
Download PDF Download RIS Download Bibtex

Abstract

An increased use of global navigation techniques for positioning, and in particular for height determination, led to a growing need for precise models of height reference surface, i.e. geoid or quasigeoid. Geoid or quasigeoid heights at a cm accuracy level, provided on growing number ofGPS/levelling sites, can not only be used for quality control of gravimetric geoid but they also can be integrated with gravity data for geoid/quasigeoid modelling. Such a model is of particular use for surveying practice. A method of quasigeoid modelling based on GPS/levelling data with support of geopotential model and gravity data was developed. The components of height anomaly are modelled with the deterministic part that consists of height anomaly based on EGM96 geopotential model and Molodensky's integral, as well as the polynomial representing trend, and from the stochastic part represented by the isotropic covariance function. Model parameters, i.e. polynomial coefficients and covariance function parameters are determined in a single process of robust estimation, resistant to the outlying measurements. The method was verified using almost a thousand height anomalies from the sites of the EUREF-POL, POLREF, EUVN'97 and WSSG (Military Satellite Geodetic Network) networks in Poland as well as geopotential model refined with gravity data in l' x l' grid. The estimated average mean square error of quasigeoid height is at the level of O.Ol m. The outlying measurements were efficiently detected.
Go to article

Authors and Affiliations

Edward Osada
Jan Kryński
ORCID: ORCID
Magdalena Owczarek
Download PDF Download RIS Download Bibtex

Abstract

The paper presents estimation of positional accuracy of digital maps using statistical analysis. Investigations have been performed for four large-scale digital maps made using different methods of producing digital map data: new total station survey (object A), re-calculation of previous direct measurements (orthogonal and polar surveys) (object B), manual vectorisation of a raster orthophotomap image (object C) and graphical-and-digital processing of analogue maps (object D). Analysis has been performed for large statistical samples of sets of vectors of shift t: L of control points and their components, i.e. true errors t: x, t: r of increments of co-ordinates. In the case of a map produced by means of new survey with an electronic tacheometer, the true errors were represented by differences between co-ordinates of control points obtained from two separate set outs. In the case of other methods of data collection for digital map production true errors were represented by differences of co-ordinates acquired from an investigated map and co-ordinates calculated from new direct surveys.
Go to article

Authors and Affiliations

Adam Doskocz
Download PDF Download RIS Download Bibtex

Abstract

Water is widely used in the mining industry, particularly in mineral enrichment processes. In the process of magnetic separation or flotation of crushed ore, a concentrate (an enriched product), and tailings (a product with a low content of a useful component) are obtained. One of the main tasks of enrichment processes is the efficient use of water resources. This is achieved by reclaiming and subsequent reusing water contained in ore beneficiation products by extracting it in industrial thickeners. Optimizing this process makes it possible to reduce water usage in the mining industry, reduce costs of mineral enrichment processes, and address extremely urgent environmental protection problems. To evaluate the process of sedimentation of the solid phase in the pulp within the thickener, measurements of parameters of longitudinal ultrasonic oscillations and Lamb waves that have traveled a fixed distance in the pulp and along the measuring surface in contact with it are used. The proposed approach allows for the consideration of pulp density, particle size of the solid phase in the ore material and the dynamics of changes in these parameters in the thickener at the initial stage of the sedimentation process. Based on the obtained values, adjustments can be made to the characteristics of its initial product, leading to reduced water usage and minimized loss of a useful component.
Go to article

Authors and Affiliations

Vladimir Morkun
1
Natalia Morkun
1
Vitaliy Tron
1
Oleksandra Serdiuk
1
Alona Haponenko
1

  1. Kryvyi Rih National University, Kryvyi Rih, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of simulations and experiments in the field of control of the low damping and time delay oscillating system. This system includes a quadcopter hovering at a very low altitude, and the altitude is controlled. The time delay is introduced mainly by the remote control device. In order to handle the quadcopter at low altitudes, a proportional-integral controller with a negative proportional coefficient is used. Such an approach can provide good results in the case of an oscillating, low damped system. This method of steering, which uses a typical radio control transmitter, can be used on any commercially available leisure drone. Feedback is provided by a camera and algorithms of computer vision. The presented results were obtained experimentally using free flight – without a harness. Different types of controllers are used to control horizontal shift and altitude.
Go to article

Bibliography

[1] Hu Y., Wu B., Vaughan J., Singhose W., Oscillation suppressing for an energy efficient bridge crane using input shaping, 9th Asian Control Conference (ASCC), IEEE, pp. 1–5 (2013), DOI: 10.1109/ASCC.2013.6606196.
[2] Watanabe K., Yoshikawa M., Ishikawa J., Damping control of suspended load for truck cranes in consideration of second bending mode oscillation, in IECON 2018 – 44th Annual Conference of the IEEE Industrial Electronics Society, IEEE, pp. 4561–4568 (2018), DOI: 10.1109/IECON.2018.8591232.
[3] Nowicki M., Respondek W., Piasek J., Kozłowski K., Geometry and flatness of m-crane systems, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 67, no. 5, pp. 893–903 (2019), DOI: 10.24425/BPASTS.2019.130872.
[4] Cheeseman I., BennettW., The Effect of the Ground on a Helicopter Rotor in Forward Flight, Ministry of Supply, Aeronautical Research Council, Reports and Memoranda, A.R.C. Technical Report R.&M., no. 3021 (1957).
[5] Sharf I., Nahon M., Harmat A., Khan W., Michini M., Speal N., Trentini M., Tsadok T., Wang T., Ground effect experiments and model validation with Draganflyer x8 rotorcraft, in 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1158–1166 (2014), DOI: 10.1109/ICUAS.2014.6842370.
[6] Kan X., Thomas J., Teng H., Tanner H.G., Kumar V., Karydis K., Analysis of Ground Effect for Small- Scale UAVs in Forward Flight, IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3860–3867 (2019), DOI: 10.1109/LRA.2019.2929993.
[7] Xuan-Mung N., Hong S.-K., Barometric Altitude Measurement Fault Diagnosis for the Improvement of Quadcopter Altitude Control, 19th International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea (South), pp. 1359–1364 (2019), DOI: 10.23919/ICCAS47443.2019.8971729.
[8] Xuan-Mung N., Hong S.-K., Nguyen N.P., Le Nhu Ngu Thanh Ha, Le T.L., Autonomous Quadcopter Precision Landing Onto a Heaving Platform: New Method and Experiment, IEEE Access, vol. 8, pp. 167192–167202 (2020), DOI: 10.1109/ACCESS.2020.3022881.
[9] Xian B., Liu Y., Zhang X., Cao M., Wang F., Hovering control of a nano quadrotor unmanned aerial vehicle using optical flow, in Proceedings of the 33rd Chinese Control Conference 2014, pp. 8259–8264 (2014), DOI: 10.1109/ChiCC.2014.6896384.
[10] Scerri J., Djordjevic G.S., Todorovic D., Modeling and control of a reaction wheel pendulum with visual feedback, in 2017 International Conference on Control, Automation and Diagnosis (ICCAD), pp. 024–029 (2017), DOI: 10.1109/CADIAG.2017.8075625.
[11] Ito K., Yamakawa Y., Ishikawa M.,Winding manipulator based on high-speed visual feedback control, in 2017 IEEE Conference on Control Technology and Applications (CCTA), pp. 474–480 (2017), DOI: 10.1109/CCTA.2017.8062507.
[12] Cheng H., Lin L., Zheng Z., Guan Y., Liu Z., An autonomous vision-based target tracking system for rotorcraft unmanned aerial vehicles, in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1732–1738 (2017), DOI: 10.1109/IROS.2017.8205986.
[13] Dong Q., Zou Q., Visual UAV detection method with online feature classification, in 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), pp. 429–432 (2017), DOI: 10.1109/ITNEC.2017.8284767.
[14] Viola P., Jones M., Rapid object detection using a boosted cascade of simple features, in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, pp. I.511–I.518 (2001), DOI: 10.1109/CVPR.2001.990517.
[15] Urbanski K., Visual Feedback for Control using Haar-Like Classifier to Identify the Quadcopter Position, in International Conference on Methods and Models in Automation and Robotics MMAR (2018), DOI: 10.1109/MMAR.2018.8485886.
[16] Bouabdallah S., Siegwart R., Backstepping and Sliding-mode Techniques Applied to an Indoor Micro Quadrotor, in Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 2247–2252 (2005), DOI: 10.1109/ROBOT.2005.1570447.
[17] Dikmen I.C., Arisoy A., Temeltas H., Attitude control of a quadrotor, in 2009 4th International Conference on Recent Advances in Space Technologies, pp. 722–727 (2009), DOI: 10.1109/RAST.2009.5158286.
[18] Astudillo A., Muñoz P., Álvarez F., Rosero E., Altitude and attitude cascade controller for a smartphone-based quadcopter, in 2017 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1447–1454 (2017), DOI: 10.1109/ICUAS.2017.7991400.
[19] GiernackiW., Iterative Learning Method for In-Flight Auto-Tuning of UAV Controllers Based on Basic Sensory Information, Applied Sciences, vol. 9, no. 4, p. 648 (2019), DOI: 10.3390/app9040648.
[20] Shang B., Liu J., Zhang Y., Wu C., Chen Y., Fractional-order flight control of quadrotor UAS on vision-based precision hovering with larger sampling period, Nonlinear Dynamics, vol. 97, no. 2, pp. 1735–1746 (2019), DOI: 10.1007/s11071-019-05103-5.
[21] Sadalla T., Horla D., Giernacki W., Kozierski P., Influence of time delay on fractional-order PIcontrolled system for a second-order oscillatory plant model with time delay, Archives of Electrical Engineering, vol. 66, no. 4, pp. 693–704 (2017), DOI: 10.1515/aee-2017-0052.
[22] Gonzalez-Hernandez I., Salazar S., Lopez R., Lozano R., Altitude control improvement for a Quadrotor UAV using integral action in a sliding-mode controller, in 2016 International Conference onUnmanned Aircraft Systems (ICUAS), pp. 711–716 (2016), DOI: 10.1109/ICUAS.2016.7502674.
[23] Wei P., Chan S.N., Lee S., Kong Z., Mitigating ground effect on mini quadcopters with model reference adaptive control, International Journal of Intelligent Robotics and Applications, vol. 3, no. 3, pp. 283–297 (2019), DOI: 10.1007/s41315-019-00098-z.
[24] Lopez-Franco C., Gomez-Avila J., Alanis A.Y., Arana-Daniel N., Villaseñor C., Visual Servoing for an Autonomous Hexarotor Using a Neural Network Based PID Controller, Sensors, vol. 17, no. 8, p. 1865 (2017), DOI: 10.3390/s17081865.
[25] Almeshal A.M., Alenezi M.R., A Vision-Based Neural Network Controller for the Autonomous Landing of a Quadrotor on Moving Targets, Robotics, vol. 7, no. 4, p. 71 (2018), DOI: 10.3390/robotics7040071.
[26] Levine W.S., Ed., The Control Handbook, CRC Press, Inc., Ashwin J. Shah, Jaico Publishing House, 121, M.G. Road, Mumbai – 400 023 (1999).
[27] Urbanski K., Zawirski K., Improved Method for Position Estimation Using a Two-Dimensional Scheduling Array, Automatika – Journal for Control, Measurement, Electronics, Computing and Communications, vol. 56, no. 3, pp. 331–340 (2015), DOI: 10.7305/automatika.2015.12.732.
[28] PL-Grid Infrastructure – Welcome – Infrastruktura PL-Grid: www.plgrid.pl/en.

Go to article

Authors and Affiliations

Konrad Urbański
1
ORCID: ORCID

  1. Institute of Robotics and Machine Intelligence, Poznan University of Technology, Piotrowo 3A str., 60-965 Poznan, Poland
Download PDF Download RIS Download Bibtex

Abstract

The current solutions for pose estimation problems using coplanar feature points (PnP problems) can be divided into non-iterative and iterative solutions. The accuracy, stability, and efficiency of iterative methods are unsatisfactory. Therefore, non-iterative methods have become more popular. However, the non-iterative methods only consider the correspondence of the feature points with their 2D projections. They ignore the constraints formed between feature points. This results in lower pose estimation accuracy and stability. In this work, we proposed an accurate and stable pose estimation method considering the line constraints between every two feature points. Our method has two steps. In the first step, we solved the pose non-iteratively, considering the correspondence of the 3D feature points with their 2D projections and the line constraints formed by every two feature points. In the second step, the pose was refined by minimizing the re-projection errors with one iteration, further improving accuracy and stability. Simulation and actual experiment results show that our method’s accuracy, stability, and computational efficiency are better than the other existing pose estimation methods. In the -45° to +45° measuring range, the maximum angle measurement error is no more than 0.039°, and the average angle measurement error is no more than 0.016°. In the 0 mm to 30 mm measuring range, the maximum displacement measurement error is no more than 0.049 mm, and the average displacement measurement error is no more than 0.012 mm. Compared to other current pose estimation methods, our method is the most efficient based on guaranteeing measurement accuracy and stability. Keywords:
Go to article

Authors and Affiliations

Zhang Zimiao
1
Zhang Hao
1
Zhang Fumin
2
Zhang Shihai
1

  1. School of Mechanical Engineering, Tianjin University of Technology and Education, Tianjin, China
  2. State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China
Download PDF Download RIS Download Bibtex

Abstract

In this article is revealed the systems of a good delivery witch implement unmanned aerial vehicles during providing the service. the one channel systems of a goods delivery are a goal of this research work. the close analysing of their functional features, the classification, the types and parameters of different systems from this band are presented. in addition, the modelling of the different types of the one channel systems of goods delivery are has done.

Go to article

Authors and Affiliations

Roman N. Kvyetnyy
Yaroslav A. Kulyk
Bogdan P. Knysh
Yuryy Yu. Ivanov
Andrzej Smolarz
Orken Mamyrbaev
Aimurat Burlibayev
Download PDF Download RIS Download Bibtex

Abstract

The cost overrun in road construction projects in Iraq is one of the major problems that face the construction of new roads. To enable the concerned government agencies to predict the final cost of roads, the objective this paper suggested is to develop an early cost estimating model for road projects using a support vector machine based on (43) sets of bills of quantity collected in Baghdad city in Iraq. As cost estimates are required at the early stages of a project, consideration was given to the fact that the input data for the support vector machine model could be easily extracted from sketches or the project’s scope definition. The data were collected from contracts awarded by the Mayoralty of Baghdad for completed projects between 2010–2013. Mathematical equations were constructed using the Support Vector Machine Algorithm (SMO) technique. An average of accuracy (AA) (99.65%) and coefficient of determination (R2) (97.63%) for the model was achieved by the created prediction equations.
Go to article

Authors and Affiliations

Musaab Falih Hasan
1
ORCID: ORCID
Oday Hammody
2
ORCID: ORCID
Khaldoon Satea Albayati
3
ORCID: ORCID

  1. General Directorate of Education Baghdad Rusafa First, Ministry of Education, Iraq
  2. Civil Engineering Department, University of Technology, Baghdad, Iraq
  3. Iraqi Reinsurance Company, Ministry of Finance, Iraq
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of biomass estimates of commercial fishes in the South Georgia region made by "swept area" method on the basis of catch statistics of a B-22 Polish trawler in the 1980/1981 season. Total biomass was estimated on about 11 x 104 t.

Go to article

Authors and Affiliations

Mirosław Mucha
Download PDF Download RIS Download Bibtex

Abstract

The paper describes a novel online identification algorithm for a two-mass drive system. The multi-layer extended Kalman Filter (MKF) is proposed in the paper. The proposed estimator has two layers. In the first one, three single extended Kalman filters (EKF) are placed. In the second layer, based on the incoming signals from the first layer, the final states and parameters of the two-mass system are calculated. In the considered drive system, the stiffness coefficient of the elastic shaft and the time constant of the load machine is estimated. To improve the quality of estimated states, an additional system based on II types of fuzzy sets is proposed. The application of fuzzy MKF allows for a shorter identification time, as well as improves the accuracy of estimated parameters. The identified parameters of the two-mass system are used to calculate the coefficients of the implemented control structure. Theoretical considerations are supported by simulations and experimental tests.
Go to article

Authors and Affiliations

Kacper Śleszycki
1
ORCID: ORCID
Karol Wróbel
1
ORCID: ORCID
Krzysztof Szabat
1
ORCID: ORCID
Seiichiro Katsura
2
ORCID: ORCID

  1. Wrocław University of Science and Technology, Institute of Electrical Machines, Drives and Measurements, Wrocław, Poland
  2. Keio University, Department of System Design Engineering, Tokyo, Japan
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the analysis of different fault states in drive systems with multiphase induction motors. The mathematical models of a five-phase and six-phase induction motor and the MRASCC estimator have been presented and the description of the Space Vector Modulation has been shown. The Direct Field-Oriented Control (DFOC) system is analyzed. Results of the simulation and experimental studies of the Direct Field-Oriented Control systems in the fault conditions are presented. The author’s original contribution includes analysis and studies of the DFOC control method of a five-phase induction motor resistant to the motor speed sensor fault with the use of the MRASCC estimator.

Go to article

Authors and Affiliations

Jacek Jan Listwan
Download PDF Download RIS Download Bibtex

Abstract

Multiple Input Multiple Output (MIMO (techniques use multiple antennas at both transmitter and receiver for increasing the channel reliability and enhancing the spectral efficiency of wireless communication system.MIMO Spatial Multiplexing (SM) is a technology that can increase the channel capacity without additional spectral resources. The implementation of MIMO detection techniques become a difficult mission as the computational complexity increases with the number of transmitting antenna and constellation size. So designing detection techniques that can recover transmitted signals from Spatial Multiplexing (SM) MIMO with reduced complexity and high performance is challenging. In this survey, the general model of MIMO communication system is presented in addition to multiple MIMO Spatial Multiplexing (SM) detection techniques. These detection techniques are divided into different categories, such as linear detection, Non-linear detection and tree-search detection. Detailed discussions on the advantages and disadvantages of each detection algorithm are introduced. Hardware implementation of Sphere Decoder (SD) algorithm using VHDL/FPGA is also presented.

Go to article

Authors and Affiliations

Asma Mohamed
Abdel Halim Zekry
Reem Ibrahim
Download PDF Download RIS Download Bibtex

Abstract

Fractal analysis is one of the rapidly evolving branches of mathematics and finds its application in different analyses such as pore space description. It constitutes a new approach to the issue of their natural irregularity and roughness. To be properly applied, it should be encompassed by an error estimation. The article presents and verifies uncertainties along with imperfections connected with image analysis and expands on the possible ways of their correction. One of key aspects of such research is finding both appropriate place and the number of photos to take. A coarse- grained sandstone thin section was photographed and then pictures were combined into one, bigger image. Fractal parameters distributions show their change and suggest that the accurately gathered group of photos include both highly and less porous regions. Their amount should be representative and adequate to the sample. The resolution influence on the fractal dimension and lacunarity values was examined. For SEM limestone images obtained using backscattered electrons, magnification in the range of 120x to 2000x was used. Additionally, a single pore was examined. The acquired results point to the fact that the values of fractal dimension are similar to a wide range of magnifications, while lacunarity changes each time. This is connected with changing homogeneity of the image. The article also undertakes a problem of determining fractal parameters spatial distribution based on binarization. The available methods assume that it is carried out after or before the image division into rectangles to create fractal dimension and lacunarity values for interpolation. An individual binarization, although time consuming, provides better results that resemble reality to a closer degree. It is not possible to define a single, correct methodology of error elimination. A set of hints has been presented that can improve results of further image analysis of pore space.

Go to article

Authors and Affiliations

Michał Figiel
Download PDF Download RIS Download Bibtex

Abstract

Generalized observers are proposed to relax the existing conditions required to design Luenberger observers for rectangular linear descriptor systems with unknown inputs. The current work is focused on designing index one generalized observers, which can be naturally extended to higher indexes. Sufficient conditions in terms of system operators for the existence of generalized observers are given and proved. Orthogonal transformations are used to derive the results. A physical model is presented to show the usefulness of the proposed theory.
Go to article

Authors and Affiliations

Abhinav Kumar
1
Mahendra Kumar Gupta
1 2

  1. Department of Mathematics, National Institute of Technology Jamshedpur, Jharkhand, India
  2. School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Khordha, Odisha, 752050 – India
Download PDF Download RIS Download Bibtex

Abstract

The asbestos removal in Poland is carried out based on the Programme of Country Cleaning from Asbestos for the Years 2009–2023. Pursuant to this document asbestos-containing materials should be removed from the territory of the whole country by the end of 2032. The pace of asbestoscontaining products removal was estimated and also the time necessary to implement this process. These figures were estimated using two resources of data. The data gathered in the Asbestos Database (Asbestos Database... 2022) were analysed, and the analysis of detailed stocktaking and its update for 20 selected communes of various nature was carried out. The pace of removing in the analysed communes is definitely diversified. The obtained values generally range from 0.28 to 6.35 kg/R/y (kg per resident/year). An averaged pace of asbestos removal for the entire country is from 2.24 to 3.65 kg/R/y, depending on the adopted method of calculations. The analysis has shown that considering the current pace of asbestos-containing products removing, these materials will not be removed from the area of Poland by the set date, i.e. by the end of 2032. In individual provinces the amount of asbestos and the pace of removal are drastically different. Retaining the current pace of asbestoscontaining products removing, such products will disappear from Poland only within 27–193 years, depending on the province. An average pace of removal, given for the country scale, allows to state that 83 years are needed for the total removal of asbestos products.
Go to article

Authors and Affiliations

Beata Klojzy-Karczmarczyk
1
ORCID: ORCID
Jarosław Staszczak
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The present paper consists of two parts. The first part presents theoretical foundations of Msplit, estimation with reference to the previous author's paper (Wiśniewski, 2009). This time, some probabilistic assumptions are described in detail. A new quantity called f-information is also introduced to formulate the split potential in more general way. The main aim of this part of the paper is to generalize the target function of Msplit estimation that is the basis for a new formulation of the optimization problem. Such problem itself as well as its solution are presented in this part of the paper. The second part of the paper presents some special case of Mspli, estimation called squared Mspli, estimation (also with reference to the mentioned above paper of the author). That part presents a new solution and development in the theory of this version of M,plit estimation and some numerical examples that show properties of the method and its application scope.
Go to article

Authors and Affiliations

Zbigniew Wiśniewski

This page uses 'cookies'. Learn more