Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Image-guided High Intensity Focused Ultrasound (HIFU) technique is dynamically developing technology for treating solid tumors due to its non-invasive nature. Before a HIFU ablation system is ready for use, the exposure parameters of the HIFU beam capable of destroying the treated tissue without damaging the surrounding tissues should be selected to ensure the safety of therapy. The purpose of this work was to select the threshold acoustic power as well as the step and rate of movement of the HIFU beam, generated by a transducer intended to be used in the HIFU ablation system being developed, by using an array of thermocouples and numerical simulations. For experiments a bowl-shaped 64-mm, 1.05 MHz HIFU transducer with a 62.6 mm focal length (f-number 0.98) generated pulsed waves propagating in two-layer media: water/ex vivo pork loin tissue (50 mm/40 mm) was used. To determine a threshold power of the HIFU beam capable of creating the necrotic lesion in a small volume within the tested tissue during less than 3 s each tissue sample was sonicated by multiple parallel HIFU beams of different acoustic power focused at a depth of 12.6 mm below the tissue surface. Location of the maximum heating as well as the relaxation time of the tested tissue were determined from temperature variations recorded during and after sonication by five thermo-couples placed along the acoustic axis of each HIFU beam as well as from numerical simulations. The obtained results enabled to assess the location of each necrotic lesion as well as to determine the step and rate of the HIFU beam movement. The location and extent of the necrotic lesions created was verified using ultrasound images of tissue after sonication and visual inspection after cutting the samples. The threshold acoustic power of the HIFU beam capable of creating the local necrotic lesion in the tested tissue within 3 s without damaging of surrounding tissues was found to be 24 W, and the pause between sonications was found to be more than 40 s.

Go to article

Authors and Affiliations

Łukasz Fura
Tamara Kujawska
Download PDF Download RIS Download Bibtex

Abstract

We have designed and built ultrasound imaging-guided HIFU ablative device for preclinical studies on small animals. Before this device is used to treat animals, ex vivo tissue studies were necessary to determine the location and extent of necrotic lesions created inside tissue samples by HIFU beams depending on their acoustic properties. This will allow to plan the beam movement trajectory and the distance and time intervals between exposures leading to necrosis covering the entire treated volume without damaging the surrounding tissues. This is crucial for therapy safety. The objective of this study was to assess the impact of sonication parameters on the size of necrotic lesions formed by HIFU beams generated by 64-mm bowl-shaped transducer used, operating at 1.08 MHz or 3.21 MHz. Multiple necrotic lesions were created in pork loin samples at 12.6-mm depth below tissue surface during 3-s exposure to HIFU beams with fixed duty-cycle and varied pulse-duration or fixed pulse-duration and varied duty-cycle, propagated in two-layer media: water-tissue. After exposures, the necrotic lesions were visualized using magnetic resonance imaging and optical imaging (photos) after sectioning the samples. Quantitative analysis of the obtained results allowed to select the optimal sonication and beam movement parameters to support planning of effective therapy.
Go to article

Bibliography

1. Chauhan S. (2008), FUSBOTs: image-guided robotic systems for Focused Ultrasound Surgery, Medical Robotics, Vanja Bozovic, I-Tech Education and Publishing, Vienna, Austria.
2. Choi J.W. et al. (2014), Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs, Ultrasonography, 33(3): 191–199, doi: 10.14366/usg.14008.
3. Duck F.A. (1990), Physical Properties of Tissue: A Comprehensive Reference Book, Academic Press, London.
4. Ebbini E.S., ter Haar G. (2015), Ultrasound-guided therapeutic focused ultrasound: current status and future directions, International Journal of Hyperthermia, 31(2): 77–89, doi: 10.3109/02656736.2014.995238.
5. Ellens N. et al. (2015), The targeting accuracy of a preclinical MRI-guided focused ultrasound system, Medical Physics, 42(1): 430–439, doi: 10.1118/1.4903950.
6. Fukuda H. et al. (2011), Hyper-echo in ultrasound images during high-intensity focused ultrasound ablation for hepatocellular carcinomas, European Journal of Radiology, 80(3): e571–e575, doi: 10.1016/ j.ejrad.2011.09.001.
7. Fura Ł., Kujawska T. (2019), Selection of exposure parameters for a HIFU ablation system using an array of thermocouples and numerical simulations, Archives of Acoustics, 44(2): 349–355, doi: 10.24425/ aoa.2019.128498.
8. Guillaumier S. et al. (2018), A multicentre study of 5- year outcomes following focal therapy in treating clinically significant nonmetastatic prostate cancer, European Urology, 74(4): 422–429, doi: 10.1016/j.eururo. 2018.06.006.
9. ter Haar G. (2007), Therapeutic applications of ultrasound, Progress in Biophysics & Molecular Biology, 93(1–3): 111–129, doi: 10.1016/j.pbiomolbio. 2006.07.005.
10. Hand J.W., Shaw A., Sadhoo N., Rajaqopal S., Dickinson R.J., Gavrilov L.R. (2009), A random phased array device for delivery of high intensity focused ultrasound, Physics in Medicine & Biology, 54(19): 5675–5693, doi: 10.1088/0031-9155/54/19/002.
11. Koch T., Lakshmanan S., Brand S., Wicke M., Raum K., Moerlein D. (2011), Ultrasound velocity and attenuation of porcine soft tissues with respect to structure and composition: I. Muscle, Meat Science, 88(1): 51–58, doi: 10.1016/j.meatsci.2010.12.002.
12. Kujawska T., Secomski W., Byra M., Postema M., Nowicki A. (2017), Annular phased array transducer for preclinical testing of anti-cancer drug efficacy on small animals, Ultrasonics, 76: 92–98, doi: 10.1016/j.ultras.2016.12.008.
13. Law W.K., Frizzell L.A., Dunn F. (1985), Determination of the nonlinearity parameter B/A of biological media, Ultrasound in Medicine & Biology, 11(2): 307–318, doi: 10.1016/0301-5629(85)90130-9.
14. Leslie T. et al. (2012), High-intensity focused ultrasound treatment of liver tumours: post-treatment MRI correlates well with intra-operative estimates of treatment volume, The British Journal of Radiology, 85(1018): 1363–1370, doi: 10.1259/bjr/56737365.
15. Li K., Bai J.F., Chen Y.Z., Ji X. (2018), Experimental evaluation of targeting accuracy of an ultrasound- guided phased-array high-intensity focused ultrasound system, Applied Acoustics, 141: 19–25, doi: 10.1016/j.apacoust.2018.06.011.
16. Li S., Wu P.H. (2013), Magnetic resonance imageguided versus ultrasound guided high-intensity focused ultrasound in the treatment of breast cancer, Chinese Journal of Cancer, 32(8): 441–452, doi: 10.5732/cjc.012.10104.
17. Masamune K., Kurima I., Kuwana K., Yamashita H., Chiba T., Dohi T. (2013), HIFU positioning robot for less-invasive fetal treatment, Procedia CIRP, 5: 286-289, doi: 10.1016/j.procir.2013.01.056.
18. Melodelima D., N’Djin W.A., Parmentier H., Chesnais S., Rivoire M., Chapelon J.Y. (2009), Thermal ablation by high-intensity-focused ultrasound using a toroid transducer increases the coagulated volume. Results of animal experiments, Ultrasound in Medicine & Biology, 35(3): 425–435, doi: 10.1016/j.ultrasmedbio.2008.09.020
19. Nassiri D.K., Nicholas D., Hill C.R. (1979), Attenuation of ultrasound in skeletal muscle, Ultrasonics, 17(5): 230–232, doi: 10.1016/0041-624x(79)90054-4.
20. Orsi F., Arnone P., Chen W., Zhang L. (2010), High intensity focused ultrasound ablation: a new therapeutic option for solid tumors, Journal of Cancer Research and Therapeutics, 6(4): 414–420, doi: 10.4103/0973-1482.77064.
21. Schneider C.A., Rasband W.S., Eliceiri K.W. (2012), NIH Image to ImageJ: 25 years of image analysis, Nature Methods, 9(7): 671–675, doi: 10.1038/ nmeth.2089.
22. Shui L. et al. (2015), High-intensity focused ultrasound (HIFU) for adenomyosis: two-year follow-up results, Ultrasonics Sonochemistry, 27: 677–681, doi: 10.1016/j.ultsonch.2015.05.024.
23. Treeby B.E., Jaros J., Rendell A.P., Cox B.T. (2012), Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudo-spectral method, The Journal of the Acoustical Society of America, 131(6): 4324–4336, doi: 10.1121/1.4712021.
24. Veereman G. et al. (2015), Systematic review of the efficacy and safety of high-intensity focused ultrasound for localized prostate cancer, European Urology Focus, 1(2): 158–170, doi: 10.1016/j.euf.2015.04.006.
25. Wang Y., Wang Z.B., Xu Y.H. (2018), Efficacy, efficiency, and safety of magnetic resonance-guided highintensity focused ultrasound for ablation of uterine fibroids: comparison with ultrasound-guided method, Korean Journal of Radiology, 19(4): 724–732, doi: 10.3348/kjr.2018.19.4.724.
26. Wójcik J., Nowicki A., Lewin P.A., Bloomfield P.E., Kujawska T., Filipczynski L. (2006), Wave envelopes method for description of nonlinear acoustic wave propagation, Ultrasonics, 44: 310–329, doi: 10.1016/j.ultras.2006.04.001.
27. Yu T., Xu C. (2008), Hyperecho as the indicator of tissue necrosis during microbubble-assisted high intensity focused ultrasound sensitivity, specificity and predictive value, Ultrasound in Medicine & Biology, 34(8): 1343–1347, doi: 10.1016/j.ultrasmedbio.2008.01.012.
28. Zavaglia C., Mancuso A., Foschi A., Rampoldi A. (2013), High-intensity focused ultrasound (HIFU) for the treatment of hepatocellular carcinoma: is it time to abandon standard ablative percutaneous treatments?, Hepatobiliary Surgery and Nutrition, 2(4): 184–187, doi: 10.3978/j.issn.2304-3881.2013.05.02.
29. Zhang L., Rao F., Setzen R. (2017), High intensity focused ultrasound for the treatment of adenomyosis: selection criteria, efficacy, safety and fertility, Acta Obstetricia et Gynecologica Scandinavica, 96(6): 707–714, doi: 10.1111/aogs.13159.
30. Zhang X., Li K., Xie B., He M., He J., Zhang L. (2014), Effective ablation therapy of adenomyosis with ultrasound-guided high-intensity focused ultrasound, International Journal of Gynecology & Obstetrics, 124(3): 207–211, doi: 10.1016/j.ijgo.2013.08.022.

Go to article

Authors and Affiliations

Łukasz Fura
1
Wojciech Dera
2
Cezary Dziekoński
2
Maciej Świątkiewicz
3
Tamara Kujawska
1

  1. Department of Ultrasound Institute of Fundamental Technological Research, Polish Academy of Sciences
  2. Department of Theory of Continuous Media and Nanostructures Institute of Fundamental Technological Research, Polish Academy of Sciences
  3. Department of Experimental Pharmacology Mossakowski Medical Research Centre, Polish Academy of Sciences

This page uses 'cookies'. Learn more