Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The basic dynamic characteristics of façade scaffolding are natural frequencies of vibrations and corresponding mode shapes. These properties affect the scaffolding safety, as well as comfort and safety of its users. Many of the dynamic actions present at scaffolding are in the low frequency range, i.e. below 10–15 Hz. The first natural frequency of a structure is usually in the range of 0.7 to 4 Hz which corresponds to resonant frequencies of human body and it means that vibrations induced at scaffolding may strongly affect the human comfort. The easiest way of increasing the rigidity of the structure is by ensuring correct boundary conditions (support, anchorage) and bracing of the structure. The numerical analysis was performed for the real scaffolding structure of medium size. The analysis consisted of natural frequencies calculation for the original structure and for models with modified bracing and anchoring systems. The bracing modifications were introduced by reducing or increasing the number of vertical bracing shafts. The anchor system was modified by reduction of the 6 anchors in the top right corner of the scaffolding in three stages or by evenly removing nearly 1/3 of the total number of anchors. The modifications of bracing and anchor systems resulted in changing the natural frequencies. The increase of natural frequencies due to higher number of anchors and more bracing is not even for all mode shapes. Bracing is more effective in acting against longitudinal vibrations, while anchoring against vibrations perpendicular to the façade.
Go to article

Authors and Affiliations

Jarosław Bęc
1
ORCID: ORCID

  1. Lublin University of Technology, Faculty of Civil Engineering and Architecture, Nadbystrzycka 40St, 20-618 Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an analysis of natural vibrations of typical façade scaffolding. Three Finite Element Method models with different levels of accuracy of the real structure of the scaffolding representation were used. Modal analysis was carried out for each of these models. The obtained frequencies and mode shapes were compared with the results from the measurements performed on the full-scale scaffolding. The authors of the paper point out the difficulties arise while modelling such structures, and suggest ways to improve the accuracy of scaffolding computational models.

Go to article

Authors and Affiliations

P. Jamińska-Gadomska
J. Bęc
T. Lipecki
A. Robak

This page uses 'cookies'. Learn more