Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Effects of charge composition on microstructure, mechanical and fatigue properties of nodular cast irons have been studied. For experiments, five melts of nodular cast iron were used – three types of unalloyed nodular cast irons (with different ratio of steel and pig iron in a charge and different additives for regulation of the chemical composition) and two types of alloyed nodular cast irons (SiMo- and SiCu- nodular cast iron). The microstructure of the specimens was evaluated according to a norm and by automatic image analysis. The mechanical properties were investigated by the tensile test, impact bending test and Brinell hardness test. The fatigue tests were carried out at sinusoidal cyclic push-pull loading at ambient temperature. The best mechanical properties were reached in the nodular cast iron alloyed by Si and Cu, what is related to its microstructure.

Go to article

Authors and Affiliations

A. Vaško
J. Belan
E. Tillová
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to assess the innovation risk for an additive manufacturing process. The analysis was based on the results of static tensile tests obtained for specimens made of photocured resin. The assessment involved analyzing the measurement uncertainty by applying the FMEA method. The structure of the causes and effects of the discrepancies was illustrated using the Ishikawa diagram. The risk priority numbers were calculated. The uncertainty of the tensile test measurement was determined for three printing orientations. The results suggest that the material used to fabricate the tensile specimens shows clear anisotropy of the properties in relation to the printing direction.
Go to article

Authors and Affiliations

Stanisław Adamczak
Jerzy Bochnia
Bożena Kaczmarska
Download PDF Download RIS Download Bibtex

Abstract

In this research, the quality of manufactured cast metal-ceramic foams (manufactured using blowing gas) was tested. The causes responsible for defect formation in the composite foams and their consequences were analyzed using the FMEA (Failure Mode and Effects Analysis) method, which is a useful tool for minimizing losses caused by low product quality. This method involves analytically determining correlations between the cause and consequences of potential product defects, and it takes into account the criticality factor (risk). The FMEA analysis showed that pore breaks were the most "critical defect" (with the highest number of effects on the product, the Risk Priority Number, affecting the quality of the composite foam). The second most critical defect was discontinuities in the foam frame structure. Destruction or damage to the foam structure (although very rare) deprived the composite foam of its primary function, which is to reinforce the product. The third most critical defect was non-uniform foam pore size.
Go to article

Bibliography

[1] Duarte, I. & Ferreira, J.M.F. (2016). Composite and nanocomposite metal foams. Materials. 9(2), 79. DOI: 10.3390/ma9020079.
[2] Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wadley, H.N.G. (2000). Metal Foams. A Design Guide. (1st ed.). Woburn, MA, USA: Butterworth Heinemann.
[3] Marx, J., Portanova, M. & Rabiei A. (2019). Ballistic performance of composite metal foam against large caliber threats. Composite Structures 225, 111032. DOI: 10.1016/j.compstruct.2019.111032.
[4] Banhart, J. (2001). Manufacture, characterization and application of cellular metals and metal foams. Progress in Materials Science. 46(6), 559-632. DOI: 10.1016/S0079-6425(00)00002-5.
[5] Orbulov, I.N., Szlancsik, A., Kemény, A. & Kincses, D. (2020). Compressive mechanical properties of low-cost, aluminium matrix syntactic foams. Composites Part A: Applied Science and Manufacturing 135, 105923. DOI: 10.1016/j.compositesa.2020.105923.
[6] Bejger A., Chybowski L. & Gawdzińska K. (2018). Utilizing elastic waves of acoustic emission to assess the condition of spray nozzles in a marine diesel engine. Journal of Marine Engineering & Technology. 17(3), 153-159. DOI: 10.1080/20464177.2018.1492361.
[7] Chunhui, K., Liubiao C., Xianlin, W., Yuan, Z. & Junjie, W. (2018). Thermal conductivity of open cell aluminum foam and its application as advanced thermal storage unit at low temperature. Rare Metal Materials and Engineering. 47(4), 1049-1053. DOI: 10.1016/S1875-5372(18)30118-8.
[8] Banhart, J. & Seeliger, H.W. (2008). Aluminium foam sandwich panels: manufacture, metallurgy and applications. Advanced Engineering Materials. 10(9), 793-802. DOI: 10.1002/adem.200800091.
[9] Lehmhus, D., Weise, J., Szlancsik, A. & Orbulov, I.N. (2020. Fracture toughness of hollow glass microsphere-filled iron matrix syntactic foams. Materials. 13(11), 2566. DOI: 10.3390/ma13112566.
[10] Czarnecka-Komorowska, D., Grześkowiak, K., Popielarski, P., Barczewski, M., Gawdzińska, K. & Popławski, M. (2020). Polyethylene wax modified by organoclay bentonite used in the lost-wax casting process: processing−structure−property relationships. Materials. 13(10), 10. DOI: 10.3390/ma13102255.
[11] Przestacki, D., Majchrowski, R. & Marciniak-Podsadna, L. (2016). Experimental research of surface roughness and surface texture after laser cladding. Applied Surface Science. 388(A), 420-423. DOI: 10.1016/j.apsusc.2015.12.093.
[12] Zhou, J., Gao, Z., Cuitino, A.M. & Soboyejo, W.O. (2004). Effects of heat treatment on the compressive deformation behavior of open cell aluminum foams. Materials Science and Engineering A. 386(1-2), 118-128. DOI: 10.1016/ j.msea.2004.07.042.
[13] Yamada, Y., Shimojima, K., Sakaguchi, Y., Mabuchi, M., Nakamura, M. & Asahina, T. (2000). Effects of heat treatment on compressive properties of AZ91 Mg and SG91A Al foams with open-cell structure. Materials Science and Engineering A. 280(1), 225-228. DOI: 10.1016/S0921-5093(99)00671-1.
[14] Xia, X.C., Chen, X.W., Zhang, Z., Chen, X., Zhao, W.M., Liao, B. & Hur, B. (2013). Effects of porosity and pore size on the compressive properties of closed-cell Mg alloy foam. Journal of Magnesium and Alloys. 1(4), 330-335. DOI: 10.1016/j.jma.2013.11.006.
[15] García-Moreno, F. (2016). Commercial applications of metal foams: their properties and production. Materials. 9(2), 85. DOI: 10.3390/ma9020085.
[16] Banhart, J. (2013). Light-metal foams-history of innovation and technological challenges. Advanced Engineering Materials. 15(3), 82-111. DOI: 10.1002/adem.201200217.
[17] Neville, B.P. & Rabiei A. (2008). Composite metal foams processed through powder metallurgy. Materials and Design. 29(2), 388-396. DOI: 10.1016/j.matdes.2007.01.026.
[18] Fuganti, A., Lorenzi, L., Grønsund, A. & Langseth, M. (2000). Aluminum foam for automotive applications. Advanced Engineering Materials. 2(4), 200-204. Doi:10.1002/(SICI)1527-2648(200004)2:4<200::AID-ADEM200>3.0.CO;2-2.
[19] Bhattacharya, A., Calmidi, V.V. & Mahajan, R.L. (2002). Thermophysical properties of high porosity metal foams. International Journal of Heat and Mass Transfer. 45(5), 1017-1031. DOI: 10.1016/S0017-9310(01)00220-4.
[20] Miyoshi, T., Itoh M., Akiyama, S. & Kitahara A. (2000). ALPORAS Aluminum foam: production process, properties, and applications. Advanced Engineering Materials. 2(4), 179-183. DOI: 10.1002/(SICI)1527-2648(200004)2:4179:: AID-ADEM179>3.0.CO;2-G.
[21] Sereni, J.G. (2001). Magnetic systems: specific heat. in: Encyclopedia of Materials: Science and Technology. (4986-4993). Elsevier.
[22] Reay, D. (2013). Metal foams: fundamentals and applications. Applied Thermal Engineering. 61(2), 1. DOI: 10.1016/j.applthermaleng.2013.07.002.
[23] Businessinsider.com: million metal foam market analysis, (2017). Retrieved November 20, 2020, from https://markets.businessinsider.com/news/stocks/global-100-million-metal-foam-market-analysis-2017-1009247173
[24] Gawdzińska, K., Grabian, J., Szweycer, M. (2008). Patent No. 211439. Method of producing structural elements from foamed metals.
[25] Kaczyński, P., Ptak M & Gawdzińska, K. (2020). Energy absorption of cast metal and composite foams tested in extremely low and high-temperatures. Materials & Design. 196. DOI: 10.1016/j.matdes.2020.109114.
[26] Aczel, A.D. (2005). Statistics in management. Warszawa: PWN. (in Polish).
[27] Hamrol, A., Mantura W. (2006). Quality Management: Theory and practice (3rd ed.). Warszawa: PWN. (in Polish).
[28] Hamrol, A. (2007). Quality management with examples. Warszawa: PWN. (in Polish).
[29] Gawdzińska, K. (2018). Assessment of the quality of cast material-ceramic composite foams (in Polish). Archives of Foundry Engineering. Katowice–Gliwice: Komisja Odlewnictwa PAN.
[30] Sika, R., Rogalewicz, M., Popielarski, P., Czarnecka-Komorowska, D., Przestacki, D., Gawdzińska, K. & Szymański, P. (2020). Decision support system in the field of defects assessment in the metal matrix composites castings. Materials. 13(16), 3552. DOI: 10.3390/ma13163552.
[31] Gawdzińska, K. (2015). Study of metallic-ceramic composite foams with application of the computer tomograph. Metalurgija. 54 (4), 671-674.
[32] Sobczak, J. (1998). Metal monolithic and composite foams and gazars. A compendium of knowledge about metal cell structures used in modern technical design. Kraków: Instytut Odlewnictwa. (in Polish). [33] Babcsán, N., Leilmeier, D., Degischer, H.P., Flankl, H.J. (2003). In: J. Banhart, N.A. Fleck, A. Mortensen (Eds.) MetFoam 2003: Proceedings of the 3rd International Conference on Cellular Metals and Metal Foaming Technology (pp. 101-106). Berlin (Germany): MIT Pub.
Go to article

Authors and Affiliations

P. Popielarski
1
ORCID: ORCID
R. Sika
1
D. Czarnecka-Komorowska
1
ORCID: ORCID
P. Szymański
1
ORCID: ORCID
M. Rogalewicz
1
K. Gawdzińska
2
ORCID: ORCID

  1. Institute of Materials Technology, Poznan University of Technology Piotrowo 3, 61-138 Poznań, Poland
  2. Faculty of Marine Engineering, Maritime University of Szczecin, Willowa 2-4, 71-650 Szczecin, Poland
Download PDF Download RIS Download Bibtex

Abstract

FMEAs have been prioritized using RPN; however, a new standard has introduced AP for prioritization. This study seeks to determine if the number of required improvement actions increases, decreases, or stays the same when using AP in place of RPN. Statistical software was used to simulate 10,000 combinations of severity, occurrence, and detection. Both AP and RPN were calculated for the 10,000 combinations. Statistical hypothesis testing was performed to determine if there was a difference between RPNs when sorted by AP and to determine if there was a difference in actions required using RPN or AP. There is a statistically significant difference between RPNs when sorted by high, medium, and low AP. Using an RPN threshold equal to or greater than 100 would result in no change in the number of actions required if prioritizing by high and medium, but would result in fewer actions required if only high is used.
Go to article

Authors and Affiliations

Matthew Barsalou
1
ORCID: ORCID

  1. Automotive Industry, Germany
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of experimental tests carried out on concrete beams reinforced with glass fibre polymer reinforced (GFRP) bars, which have become recently one of the main substitutes for traditional steel reinforcement. GFRP bars were used in this research as the longitudinal and transverse reinforcement. An objective of the study was to investigate the influence of the shear reinforcement ratio on the shear capacity of GFRP reinforced concrete beams in comparison with the corresponding beam without shear reinforcement. Single-span, simply-supported T-section beams reinforced in flexure with 5 GFRP bars of 25 mm diameter were reinforced in shear with closed GFRP stirrups of 8 mm diameter applied in three variable spacings: 250 mm, 200 mm and 120 mm. The analysis of test results, failure modes and shear capacity is discussed in the paper in respect to investigated parameters.
Go to article

Authors and Affiliations

Damian Szczech
1
Renata Kotynia
1

  1. Lodz University of Technology, Faculty of Civil Engineering, Architecture and Environmental Engineering, al. Politechniki 6, 90-924 Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study uses statistical quality control (SQC) and overall equipment effectiveness (OEE) to examine quality at a porcelain production firm. The study is motivated by the most frequently broken machines in 2019, is the Jigger 01 machine. This paper aims to evaluate the machine’s effectiveness using the OEE method. The OEE determines the scope of the problem to be solved using the SQC method. The average OEE value in 2019 was 70%. Based on the SQC method, the product defect produced is still under control. However, the average defect is still above the company’s tolerance limit of 10%. Consequently, this study offers enhancements utilizing the Failure Mode Effect Analysis (FMEA) technique. The results indicate that human resources and machines caused defective products. This paper contributes to providing several improvements that the company can apply to maximize its quality control analysis. After implementing the improvement, the OEE value increases to 74%.
Go to article

Authors and Affiliations

Filscha Nurprihatin
Glisina Dwinoor Rembulan
Johanes Fernandes Andry
Sarah Immanuella
Ivana Tita Bella Widiwati
Download PDF Download RIS Download Bibtex

Abstract

The treelike structure links members and transfers loads via its solitary cast steel joint with branches. Therefore, the joint’s bearing capacity significantly affects the treelike structure’s stability, security, and economics. This paper utilized experimental verification and numerical modeling to examine the mechanical behavior of cast-steel joints with branches in the treelike structure under various loading conditions. Then, researchers investigated the failure process and mechanism of joints, and the three most common failure modes were outlined. Furthermore, the researchers proposed the bearing capacity calculation formula based on the common failure modes. The results show that the three common failure modes of the cast-steel joints with branches under different loading conditions are the failure in the joint core area under the axial load, the failure in the main pipe compression side under eccentric load, and the failure in the compression side of the single branch pipe root when the single branch pipe is under the uneven load. The suggested empirical calculation method can serve as a reference point for similar engineering practices design.
Go to article

Authors and Affiliations

Feng Chen
1
ORCID: ORCID
Yun Sun
1
ORCID: ORCID
Shuxuan Sun
1
ORCID: ORCID
Da Song
1
ORCID: ORCID
Yangbing Liu
1
ORCID: ORCID

  1. Nanyang Institute of Technology, School of Civil Engineering, No. 80 Changjiang Road, 473306 Nanyang, China

This page uses 'cookies'. Learn more