Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study summarised the recent achievement in developing fiber reinforced geopolymer concrete. The factor of replacing Ordinary Portland Cement (OPC) which is due to the emission of carbon dioxide that pollutes the environment globally is well discussed. The introduction towards metakaolin is presented. Besides, the current research trend involved in geopolymer also has been reviewed for the current 20 years to study the interest of researchers over the world by year. Factors that contribute to the frequency of geopolymer research are carried out which are cost, design, and the practicality of the application for geopolymer concrete. Besides, the importance of steel fibers addition to the geopolymer concrete is also well discussed. The fundamental towards metakaolin has been introduced including the source of raw material, which is calcined kaolin, calcined temperature, chemical composition, geopolymerisation process, and other properties. Alkali activators which are mixing solution between sodium hydroxide (NaOH) and sodium silicate (Na2SiO3) have been reviewed. The mechanical properties of fibers reinforced metakaolin-based geopolymer concrete which is compressive and flexural are thoroughly reviewed. The compressive and flexural strength of fiber-reinforced metakaolin geopolymer concrete shows some improvement to the addition of steel fibers. The reviews in this field demonstrate that reinforcement of metakaolin geopolymer concrete by steel fibers shows improvement in mechanical performance.
Go to article

Authors and Affiliations

Meor Ahmad Faris
1 2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 3
ORCID: ORCID
Ratnasamy Muniandy
ORCID: ORCID
Shamala Ramasamy
1 2
ORCID: ORCID
Mohammad Firdaus Abu Hashim
1 2
ORCID: ORCID
Subaer Junaedi
4
ORCID: ORCID
Andrei Victor Sandu
5
ORCID: ORCID
Muhammad Faheem Mohd Tahir
1 3
ORCID: ORCID

  1. University Malaysia Perlis, Faculty of Chemical Engineering Technology, Center of Excellent Geopolymer and Green Technology, Perlis, Malaysia
  2. University Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering Technology, Perlis, Malaysia
  3. University Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis, Malaysia
  4. Universitas Negeri Makasssar, Faculty of Mathematics and Natural Sciences, Indonesia
  5. Gheorge Asachi Technical University of Lasi, Faculty of Materials Science and Engineering, Lasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

Experimental tests were carried out to assess the failure model of steel and basalt fiber reinforced concrete two-span beams. Experimental research was focused on observing the changes in behavior of tested elements in dependence on the ratio of shear reinforcement and type of fiber. The beams had varied stirrup spacing. The steel fiber content was 78.5 kg/m3 (1.0% by vol.) and basalt fiber content was 5.0 kg/m3 (0.19% by vol.). Concrete beams without fibers were also examined. Two-span beams with a cross-section of 120×300 mm and a length of 4150 mm were loaded in a five-point bending test. Shear or flexural capacity of tested members was recorded. The effectiveness of both sorts of fibers as shear reinforcement was assessed and the differences were discussed. It was shown that fibers control the cracking process and the values of deflections and strains. Fibers clearly enhance the shear capacity of reinforced concrete beams.

Go to article

Authors and Affiliations

J. Krassowska
M. Kosior-Kazberuk

This page uses 'cookies'. Learn more