Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the recent years a tendency for design of increasingly slender structures with the use of high performance concrete has been observed. Moreover, the use of high performance concrete in tunnel structures, subject to high loads with possibility of extreme loads occurrence such as fire, has an increasing significance. Presented studies aimed at improving high performance concrete properties in high temperature conditions (close to fire conditions) by aeration process, and determining high temperature impact on the concretes features related to their durability. In this paper it has been proven that it is possible to obtain high performance concretes resistant to high temperatures, and additionally that modification of the concrete mix with aerating additive does not result in deterioration of concrete properties when subject to water impact in various form.

Go to article

Authors and Affiliations

W. Jackiewicz-Rek
T. Drzymała
A. Kuś
M. Tomaszewski
Download PDF Download RIS Download Bibtex

Abstract

In recent years, carbon fibres have been extensively used to strengthen concrete structures. In most cases, the lamination process is carried out using epoxy resin as matrix. In some cases, especially when strengthen structural elements made of weak concrete, it is possible to replace the epoxy resin with an inorganic, cement matrix, while at the same time maintaining a sufficient efficiency of strengthen understood as the percentage increase in the compressive strength of concrete samples due to the applied reinforcement in relation to the reference concrete. In these studies, elements of carbon fibres mats that are reinforced with a cement matrix were used as the starting product for fibre recovery. The laminate, which was used to reinforce concrete elements, was detached from the concrete surface and subjected to processing in order to obtain clean carbon fibre scraps without cement matrix. Then, the obtained carbon material, in shaped form, was used to strengthen self-compacting, high performance, fibre reinforced concrete (SCHPFRC). For comparative purposes, this concrete was also strengthened by carbon fibre mats (with one and three layers of CFRP). Each samples were tested in uniaxial compression test. The compressive strength of concrete reinforced with 1 and 3 layers of CFRP was higher by 37.9 and 96.3%, respectively, compared to the reference concrete. On the other hand, the compressive strength of concrete reinforced with 1 and 3 layers of carbon fibre scrapswas higher by 11.8 and 40.1%, respectively. Regardless of the reinforcement technique used, the composite elements showed a higher deformability limit in comparison plain concrete. The obtained results showed that it is possible to reuse carbon fibre to strengthen structural elements made of SCHPFRC effectively, using simple processing methods.
Go to article

Authors and Affiliations

Krzysztof Ostrowski
1
ORCID: ORCID
Kazimierz Furtak
1
ORCID: ORCID

  1. Cracow University of Technology, Faculty of Civil Engineering, Warszawska 24, 31-155 Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the paper an alternative method for increasing punching shear resistance of the flat slabs from lightweight aggregate concrete by means of hidden steel fibre reinforced capital was presented. Previous experimental studies demonstrated that the addition of steel fibres to concrete allows for increase in the punching shear resistance of flat slab. Steel fibres modify the tensile strength of concrete, which translates into increased ductility of the material. The results of the experimental investigations were presented, the aim of which was to assess the effectiveness of the proposed solution. For economic and technological reasons, a hidden capital of a height equal to half of the slabs depth was made so that the top reinforcement could be installed later. It was found that presented solution allowed to increase the load carrying capacity by about 36% with respect to the control element, made entirely of lightweight aggregate concrete.

Go to article

Authors and Affiliations

M. Gołdyn
T. Urban
Download PDF Download RIS Download Bibtex

Abstract

This article presents a study of a wall cladding system composed of stainless steel subframe and composite, fibre-reinforced concrete cladding panels, which was been installed on a high-rise public building. The study focused on the assessment of strength, safety and durability of design through laboratory tests and numerical analyses. The laboratory tests were conducted using a threedimensional tests stand and a full-scale mock-up of the wall cladding system built at the laboratory using the actually used materials and cladding panels. The boundary conditions and the test loads corresponded to the values of actions determined during the engineering phase of the high-rise building under analysis. Noteworthy, wind actions were verified by supplementary wind tunnel testing. In addition, the stainless steel was also tested to determine the strength properties of the material actually used in construction. These test were carried out just before commencement of the curtain wall installation. The 3D model was constructed with the application of the finite element method (FEM) to obtain adequate representation of geometry, material performance and structural behaviour of the analysed wall cladding system. Particular attention was paid to determination of the parameters defining the behaviour of the cladding system sub-frame from the angle of plastic deformations of the stainless steel and the resulting failure mechanisms of the members of the structure itself. To this end, the stainless steel was subjected to appropriate performance tests to determine material properties including the values of the proportionality limit and yield strength.
Go to article

Authors and Affiliations

Maciej Cwyl
1
ORCID: ORCID
Stanisław Wierzbicki
1
ORCID: ORCID
Rafał Michalczyk
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland

This page uses 'cookies'. Learn more