Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the analysis of the influence of works related to the dynamic replacement column formation on the bridge pillar and the highway embankment located nearby. Thanks to DR columns, it is possible to strengthen the soil under road embankment in a very efficient way. However, the construction of such support carries risk to buildings and engineering structures located in the neighbourhood. Therefore modelling and monitoring of the influence of the conducted works should be an indispensable element of each investment in which dynamic replacement method is applied. The presented issue is illustrated by the example of soil strengthening with DR columns constructed under road embankment of DTŚ highway located in Gliwice. During the inspection, the influence of vibrations on the nearby bridge pillar and road embankment was examined. The acceleration values obtained during these tests were used to verify the elaborated numerical model.

Go to article

Authors and Affiliations

M. Łupieżowiec
P. Kanty
Download PDF Download RIS Download Bibtex

Abstract

One of the most important and urgent problems is constructing roads in difficult soil conditions, ensuring their strength, reliability, and normal operation. To create an efficient and competitive transport infrastructure in Kazakhstan, the State Programme of Infrastructural Development “Nurly Zhol” for 2020–2025 was developed. Its main objectives are to improve the technological, scientific, and methodological base, provide resources, and to attract “Big Transit”. The paper presents the details of the survey carried out in one of road construction areas. Irrigation canals and periodic and permanent watercourses represent the hydrographic network of the construction site. The analysis of these features and field tests were included in the research. Stamp tests were performed to analyse mechanical properties of embankment soil to provide more reliable information on the mechanical properties of the soil. Structural and technological solutions were adopted based on the field tests and surveys of hydrological conditions. A numerical simulation was used to determine the stability of the road embankment, the results of which showed maximum deformations of 4.5 mm during the operation of road transport. Geosynthetic material was used to reinforce the subgrade. The results of the study have shown that the analysis of factors affecting the stability of engineering structures on difficult soil conditions helps to achieve some improvement.
Go to article

Authors and Affiliations

Assel Tulebekova
1
ORCID: ORCID
Askar Zhussupbekov
1
ORCID: ORCID
Aizhan Zhankina
1
ORCID: ORCID
Aliya Aldungarova
2
ORCID: ORCID
Gulnaz Mamyrbekova
2
ORCID: ORCID

  1. L.N. Gumilyov Eurasian National University, Department of Civil Engineering, Satpayev St, 2, 010008 Astana, Kazakhstan
  2. D. Serikbayev East Kazakhstan Technical University, School of Architecture, Construction and Energy, D. Serikbayev St, 19, 070004, Ust-Kamenogorsk, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

The problem of the arch barrel deformation in railway backfilled arch bridges caused by their typical service loads is analysed. The main attention is paid to vertical or radial displacements of characteristic points of the arch barrel. In the study results of deflection measurements carried out on single and multi-span backfilled arch bridges made of bricks or plain concrete during passages of various typical railway vehicles are used. On the basis of such results empirical influence functions of displacements are being created. In the next step, the results are utilised to estimate bending effects within the arch. The paper includes different procedures based on measurements of displacements in various points and directions. Using empirical influence functions arbitrary virtual load cases may be also considered. In this manner the proposed methodology shows a potential to be an effective tool of comprehensive calibration of numerical models of backfilled arch bridges on the basic of field tests carried out under any live loads.
Go to article

Authors and Affiliations

Tomasz Kamiński
1
ORCID: ORCID
Czesław Machelski
1
ORCID: ORCID

  1. Wroclaw University of Science and Technology, Faculty of Civil Engineering, Wyb. Wyspianskiego 27, 50-370 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The almost unlimited possibilities of modern computational tools create the temptation to study phenomena related to the operation of engineering objects exclusively using complex numerical simulations. However, the fascination with multi-parametric complex computational models, whose solutions are obtained using iterative techniques, may result in qualitative discrepancies between reality and virtual simulations. The need to verify on real objects the conclusions obtained from numerical calculations is therefore indisputable. The enormous cost and uniqueness of large-scale test stands significantly limit the possibility of conducting tests under real conditions. The solution may be an experiment focused on testing features relevant to the given task, while minimising the dimensions of the objects under consideration. Such conditions led to the concept of conducting a series of field experiments to verify the effectiveness of prototype track components, which were developed using numerical simulations to reduce the noise caused by passing trains. The main aim of this study is to examine the acoustic efficiency of prototype porous concrete sound absorbing panels, in relation to the ballasted and ballastless track structures. Presented results of the proposed unconventional experiments carried out on an improvised test stand using the recorded acoustic signals confirm the effectiveness of the developed vibroacoustic isolators.
Go to article

Authors and Affiliations

Cezary Kraśkiewicz
1
ORCID: ORCID
Grzegorz Klekot
2
ORCID: ORCID
Piotr Książka
3
Artur Zbiciak
1
ORCID: ORCID
Przemysław Mossakowski
1
ORCID: ORCID
Patrycja Chacińska
3
Anna Al Sabouni-Zawadzka
1
ORCID: ORCID

  1. Faculty of Civil Engineering, Warsaw University of Technology
  2. Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology
  3. National Research Institute, Department of Environmental Acoustics, Institute of Environmental Protection Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The present paper describes an experimental methodology of identification of dynamic characteristics of a track structure, consisting in determination of a track decay rate (TDR) in the field tests that were conducted by the authors on the railway line section inWarsaw. The proposed methodology of measurements, parameters determination and presentation of the results is based on the measurement methods described in EN 15461 [1], which are aimed at determination of TDR. The values of TDR determined in the impulse tests in one-third octave bands are compared with the limiting values specified in EN ISO 3095 [2] and Technical Specifications for Interoperability (TSI) [3]. Based on the obtained experimental data, the analysed railway line is classified as a structure that does not generate excessive level of rolling noise from the vibrations induced by the moving rolling stock on structural elements of the track – particularly on rails. The results obtained in this study are promising from the point of view of future development of effective solutions used for protection of people and environment against noise generated by the railway traffic.
Go to article

Authors and Affiliations

Cezary Kraśkiewicz
1
ORCID: ORCID
Przemysław Mossakowski
1
ORCID: ORCID
Artur Zbiciak
1
ORCID: ORCID
Anna Al Sabouni-Zawadzka
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper analyses the loss mechanism of roof insulation kits’ performance due to dampness increase in the insulation layers. The analyzed structures were used in standard conditions for ten years and had thermal insulation made of expanded polystyrene with a hydrophobized surface. The dampness of the thermal insulation materials was determined after the referenced period for their future fitness as roof insulation, based on laboratory tests of material samples collected from the structures. They were completed with a computer simulation of heat transfer and dampness in the partition for working conditions specified for ten years, assuming the thermal conductivity was determined for the materials collected from the analyzed roofs. It was discovered that simulation-based calculation dampness values are much lower than those observed after ten years of roof utilization. Additionally, the authors attempted to determine the correlations between the period of thermal insulation materials used in real conditions and the selected properties of the products determined in laboratory tests. To that end, the collected material was dried to constant weight and then subjected to accelerated aging through total immersion in water at room temperature, for twenty-eight days, followed by 300 freeze-thaw cycles at –20°C and +20°C. The results helped conclude that the abovementioned laboratory testing cycle does not allow for assessing the fitness for the use of the referenced products for ten years. The directions of future laboratory tests were set, suggesting extending the testing cycle at least twice.
Go to article

Authors and Affiliations

Barbara Francke
1
ORCID: ORCID
Agnieszka Winkler-Skalna
2
ORCID: ORCID
Robert Geryło
3
ORCID: ORCID

  1. Warsaw University of Life Sciences – SGGW, Institute of Civil Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
  2. Thermal Physics, Acoustics and Environment Department, Building Research Institute, Filtrowa 1,00-611 Warsaw, Poland
  3. Building Research Institute, Filtrowa 1, 00-611 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Preliminary results of laboratory and field tests of fibre optic rotational seismographs designed for rotational seismology are presented. In order to meet new directions of the research in this field, there is clearly a great need for suitable and extremely sensitive wideband sensors. The presented rotational seismographs based on the fibre optic gyroscopes show significant advantages over other sensor technologies when used in the seismological applications. Although the presented results are prepared for systems designed to record strong events expected by the so-called “engineering seismology”, the described system modification shows that it is possible to construct a device suitable for weak events monitoring expected by basic seismological research. The presented sensors are characterized, first and foremost, by a wide measuring range. They detect signals with amplitudes ranging from several dozen nrad/s up to even few rad/s and frequencies from 0.01 Hz to 100 Hz. The performed Allan variance analysis indicates the sensors main parameters: angle random walk in the range of 3 ∙ 10 −8 - 2 ∙ 10 −7 rad/s and bias instability in the range of 2 ∙ 10 −9 - 2 ∙ 10 −8 rad/s depending on the device. The results concerning the registration of rotational seismic events by the systems located in Książ Castle, Poland, as well as in the coalmine “Ignacy” in Rybnik, Poland were also presented and analysed.
Go to article

Bibliography

  1. Guéguen, P. & Astorga, A. The Torsional Response of Civil Engineering Structures during Earthguake from a Observational Point of View. Sensors 21, 342 (2021). https://doi.org/10.3390/s21020342
  2. Zembaty, Z., Bernauer, F., Igel, H. & Schreiber, K. U. Rotation Rate Sensors and Their Sensors 21, 5344 (2021). https://doi.org/10.3390/s21165344
  3. Guéguen, P., Guattari, F., Aubert, C. & LAudat. Comparing Direct Observation of Torsion with Array-Derived Rotation in Civil Engineering Structures. Sensors 21, 142 (2021). https://doi.org/10.3390/s21020142
  4. Rossi, Y. et al. Kalman Filter-Based Fusion of Collocated Acceleration, GNSS and Rotation Data for 6C Motion Sensors 21, 1543 (2021). https://doi.org/10.3390/s21041543
  5. Fuławka, K., Pytel, W. & Pałac-Walko, B. Near-Field measurement of six degrees of freedom mining-induced termios in lower siliesian coper basin. Sensors 20, 6801 (2020). https://doi.org/10.3390/s21020142
  6. Lee, W. H. K. Seismology, Rotation. in Encyclopedia of Solid Earth Geophysics; (eds. Gupta, H. ) 1–12 (Springer, Dordrecht, The Netherlands, 2019).
  7. Chin-Jen, L., Chun-Chi, L. & Lee, W.H.K. Recording Rotational and Translational Ground Motions of Two TAIGER Explosions in Northeastern Taiwan on 4 March. Bull. Seismol. Soc. Am 99(2B), 1237– 1250 (2008). https://doi.org/10.1785/0120080176
  8. Trifunac, M. D. Rotations in Structural Response. Bull. Seismol. Soc. Am 99(2B), 968–979 (2009). https://doi.org/10.1785/01200800068
  9. Grzebyk, W., Mertuszka, P. & Stolecki, L. Characteristics of the vibratory motion of a transaction and rotating character coming from mine seismic quakes. Wiadomości Górnicze 66(2), 97–103 (2015). [in Polish]
  10. Kurzych, A. T, Jaroszewicz, L. R., Kowalski, J. K. & Sakowicz, B. Investigation of rotational motion in a reinforced concrete frame construction by a fibre optic gyroscope, Opto- Electron. Rev. 28(2), 69- 73 (2020). https://doi.org/10.24425/opelre.2020.132503
  11. Zembaty, Z., Mutke, G., Nawrocki, D. & Bobra, P. Rotational Ground-Motion Records from Induced Seismic Events, Res. Let. 88(1), 13-22 (2017). https://doi.org/10.1785/0220160131
  12. Kaláb, Z., Knejzlík, J. & Lednická, M. Observation of rotational component in digital data of mining induced seismic events. Górnictwo i Geologia 7(1), 75–85 (2012).
  13. Ju, L., Blair, D. G. & Zhao, C. Detection of gravitational waves. Rep. Prog. Phys. 63, 1317–1427 (2000). https://doi.org/10.1088/0034-4885/63/9/201
  14. Teisseyre R. Why rotational seismology: confrontation between classic and asymmetric Bull. Seismol. Soc. Am. 101(4), 1683-1691 (2011). https://doi.org/10.1785/0120100078
  15. Abreu, R., Kamm, J. & Reiß, A-S. Micropolar modelling of rotational waves in Geophys. J. Int. 210, 1021-1046 (2017). https://doi.org/10.1093/gji/ggx211
  16. Hart, G. C., DiJulio, R. M. & Lew, M. Torsional response of high rise buildings ASCE, Journal of Structure Division 101(2), 397–415 (1975). https://doi.org/10.1061/JSDEAG.0003999
  17. Suryanto, W. Rotational Motions in Seismology, Theory and Application. (LMU München: Faculty of Geosciences, 2006). https://edoc.ub.uni-muenchen.de/7850/1/Suryanto_Wiwit.pdf
  18. Zerva, A. & Zhang, O. Corellation patterns in characteristic of spatially variable seismic ground motions. Earthquake Engineering & Structural Dynamics 26, 19–39 (1997).https://doi.org/10.1002/(SICI)1096-9845(199701)26:1%3C19::AID-EQE620%3E3.0.CO;2-F
  19. Jaroszewicz, L.R. et al. Review of the usefulness of various rotational seismometers with laboratory results of fibre-optic ones tested for engineering applications. Sensors 16, 2161, (2016). https://doi.org/10.3390/s16122161
  20. Sagnac, G. The light ether demonstrated by the effect of the relative wind in ether into a uniform rotation interferometer. Acad. Sci. 95, 708-710 (1913).
  21. Post, E. J. Sagnac effect. Rev. Mod. Phys. 39, 475-496 (1967). https://doi.org/10.1103/RevModPhys.39.475
  22. Lefevre, H. C., Martin, P. et al. High-dynamic-range fibre gyro with all-digital signal Proc. of SPIE 1367, 72-80 (1991). https://doi.org/10.1117/12.24730
  23. Niespodziany, S., Kurzych, A.T. & Dudek M. Detector diode circuit noise measurement and power supply method selection for the fibre optic seismograph, Opto-Electron. Rev. 29(2), 71-79 (2021). https://doi.org/10.24425/opelre.2021.135830
  24. Kurzych, A. T. et al. Measurements of rotational events generated by artificial explosions and external excita-tions using the optical fibre sensors network, Sensors 20(21), 6107 (2020). https://doi.org/10.3390/s20216107
  25. Bernauer, et al. Rotation, Strain and Translation Sensors Performance Tests with Active Seismic Sources. Sensors 21, 264 (2021). https://doi.org/10.3390/s21010264
  26. Kurzych, A. T., Jaroszewicz, L. R., Dudek, M., Sakowicz, B. & Kowalski, J. K. Towards uniformity of rotational events recording – initial data from common test engaging more than 40 sensors including a wide number of fibre-optic rotational seismometers. Opto-Electron. Rev. 29(1), 39-44 (2021). https://doi.org/10.24425/opelre.2021.135827
  27. Konno, K. & Ohmachi, T. Ground Motion characteristics estimated from spectral ratio between horizonatal and vertical components of microtermor. Bull. Seismol. Soc. Am. 88(1), 228-241 (1998). https://doi.org/10.1785/BSSA0880010228
  28. Murray-Bergquist, L., Bernauer, F. & Igel, H. Characterization of Six-Degree-of-Freedom Sensors for Building Health Sensors 21, 3732 (2021). https://doi.org/10.3390/s21113732
  29. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fibre Optic Gyros. IEEE-SA Standards Boards 952 (1997). https://doi.org/10.1109/IEEESTD.1998.86153
  30. Allan Variance: Noise Analysis for Gyroscopes. Applications Note AN5087 Rev.0.2/2015. Freescale Semisconductor Inc. (2015). https://telesens.co/wp- content/uploads/2017/05/AllanVariance5087-1.pdf
  31. Di Virgilio, A. D. et al. Sensitivity limit investigation of a Sagnac gyroscope through linear regression analysis. Eur. Phys. J. C 81, 400 (2021). https://doi.org/10.1140/epjc/s10052-021-09199-1
Go to article

Authors and Affiliations

Leszek R. Jaroszewicz
1
ORCID: ORCID
Michał Dudek
1
ORCID: ORCID
Anna T. Kurzych
1
ORCID: ORCID
Krzysztof P. Teisseyre
2
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, 2 gen. S. Kaliskiego St., Warszawa, 00-908, Poland
  2. Institute of Geophysics, Polish Academy of Sciences, 64 Ks. Janusza St., Warszawa, 01-452, Poland

This page uses 'cookies'. Learn more