Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, an analysis of the induction motor control scheme based on the Direct Rotor Flux Oriented Control (DRFOC) for a whole speed range, including fieldweakening (FW) regions is presented. Two field-weakening algorithms have been compared and verified through simulation with a 3.0 [kW] induction motor drive.

Go to article

Authors and Affiliations

K. Nguyen-Thac
T. Orlowska-Kowalska
G. Tarchala
Download PDF Download RIS Download Bibtex

Abstract

Permanent magnet (PM) excited synchronous machines used in modern drives for electro-mobiles suffer in high speed regions from the limited battery-voltage. The field weakening requires designing machines with reduced power conversion properties or increasing the size of the power converter. A new concept of such a machine features PM excitation, single-tooth winding and an additional circumferential excitation coil fixed on the stator in the axial center of the machine. By the appropriate feeding of this coil, the amplitude of the voltage effective excitation field can be varied from zero to values above those of the conventional PM-machines. The capability of reducing the excitation field to zero is an important safety aspect in case of failing of the feeding convertor.

Go to article

Authors and Affiliations

H. May
R. Palka
P. Paplicki
S. Szkolny
W.-R. Canders
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the concept of an innovative field-controlled axial-flux permanent-magnet (FCAFPM) machine. In order to show the working principle and features of the proposed dual-rotor with surface-mounted PM’s and iron poles, a toroidallywounded slotted single-stator FCAFPM machine is investigated and analyzed in detail, using 3-D FEAnalysis. The control range, back electromotive force (back-EMF), output and cogging torque components have been evaluated.

Go to article

Authors and Affiliations

Piotr Paplicki

This page uses 'cookies'. Learn more