Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The dynamic process of the interaction between a turbulent jet diffusion methane flame and a lateral wall was experimentally studied. The evolution of the flame temperature field with the Nitrogen dilution of the methane jet flame was examined. The interaction between the diffusion flame and the lateral wall was investigated for different distance between the wall and the central axes of the jet flame. The dilution is found to play the central role in the flame extinction process. The flame response as the lateral wall approaches from infinity and the increasing of the dilution rate make the flame extinction more rapid than the flame without dilution, when the nitrogen dilution rate increase the flame temperature decrease.
Go to article

Authors and Affiliations

Nadjib Ghiti
Download PDF Download RIS Download Bibtex

Abstract

To improve mechanical properties and increasing useful life of metal pieces, different methods of welding are used for repairing surface

crack of metal pieces. In this research, performance of flame welding method by spraying pure iron powder evaluated for repairing surface

grooves of structural steel. First, four specimens including one control specimen and other three specimens grooved specimens in depth of

1mm and in length of 12.5mm and groove width in the sizes of 0.5, 0.75 and 1mm.were prepared then, powder melted using oxyacetylene

reducing flame and spraying iron powder in the flame path and attached to the inner surface of the groove and finally, the specimen

repaired. Results showed that after repairing surface groove, tensile strength of the repaired specimens were reached to the tensile strength

of control specimen with the margin of 2.5%.

Go to article

Authors and Affiliations

P. Keyhany
S.E. Vahdat
Download PDF Download RIS Download Bibtex

Abstract

In this study, the turbulent non-premixed methane-air flame is simulated to determine the effect of air velocity on the length of flame, temperature distribution and mole fraction of species. The computational fluid dynamics (CFD) technique is used to perform this simulation. To solve the turbulence flow, k-ε model is used. In contrast to the previous works, in this study, in each one of simulations the properties of materials are taken variable and then the results are compared. The results show that at a certain flow rate of fuel, by increasing the air velocity, similar to when the properties are constant, the width of the flame becomes thinner and the maximum temperature is higher; the penetration of oxygen into the fuel as well as fuel consumption is also increased. It is noteworthy that most of the pollutants produced are NOx, which are strongly temperature dependent. The amount of these pollutants rises when the temperature is increased. As a solution, decreasing the air velocity can decrease the amount of these pollutants. Finally, comparing the result of this study and the other work, which considers constant properties, shows that the variable properties assumption leads to obtaining more exact solution but the trends of both results are similar.

Go to article

Authors and Affiliations

Zafar Namazian
Heidar Hashemi
Farideh Namazian
Download PDF Download RIS Download Bibtex

Abstract

Flame retardants (FRs) that have an adverse effect on human and the environment have been subject to regulation since 1972. However, FRs emerging as a replacement, are not proving to be fully environmentally safe. Water and sediment contamination by FRs, including organophosphorus (OPFRs) and novel brominated (NBFRs) ones, is a matter of major concern. Due to their common usage, many release sources, and relatively high mobility, they pose a threat to aquatic organisms and ecosystems. This review summarises studies on the OPFRs’, and NBFRs’ simultaneous occurrence in water and corresponding sediment. The main sources of occurrence and routes of entry of FRs into the environment are presented. The newest reports on the ecotoxicity of selected FRs had been summarised in order to bring the matter to attention. The research revealed that although great efforts had been made to study the occurrence of OPFRs and NBFRs in water and sediment separately, there is a lack of research on their occurrence in both media in the same area. Although major efforts have been made to study the ecotoxicity of OPFRs, there are some deficiencies for the NBFRs. Considering their relatively high ecotoxicity, further studies should be conducted on joint ecotoxicity, which may cause synergistic or antagonistic effects.
Go to article

Authors and Affiliations

Adriana M. Dowbysz
1
ORCID: ORCID
Mariola Samsonowicz
1
ORCID: ORCID
Bożena Kukfisz
2
ORCID: ORCID

  1. Bialystok University of Technology, Department of Chemistry, Biology and Biotechnology, 45E Wiejska St, 15-351, Bialystok, Poland
  2. Fire University, Institute of Safety Engineering, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Biogas, a renewable fuel, has low operational stability range in burners due to its inherent carbon-dioxide content. In cross-flow configuration, biogas is injected from a horizontal injector and air is supplied in an orthogonal direction to the fuel flow. To increase the stable operating regime, backward facing steps are used. Systematic numerical simulations of these flames are reported here. The comprehensive numerical model incorporates a chemical kinetic mechanism having 25 species and 121 elementary reactions, multicomponent diffusion, variable thermo-physical properties, and optically thin approximation based volumetric radiation model. The model is able to predict different stable flame types formed behind the step under different air and fuel flow rates, comparable to experimental predictions. Predicted flow, species, and temperature fields in the flames within the stable operating regime, revealing their anchoring positions relative to the rear face of the backward facing step, which are difficult to be measured experimentally, have been presented in detail. Resultant flow field behind a backward facing step under chemically reactive condition is compared against the flow fields under isothermal and non-reactive conditions to reveal the significant change the chemical reaction produces. Effects of step height and step location relative to the fuel injector are also presented.
Go to article

Bibliography

[1] D. Andriani, A. Wresta, T.D. Atmaja, and A. Saepudin. A review on optimization production and upgrading biogas through CO 2 removal using various techniques. Applied Biochemistry and Biotechnology, 172(4):1909–1928, 2014. doi: 10.1007/s12010-013-0652-x.
[2] I.U. Khan, Mohd H.D. Othman, H. Hashim, T. Matsuura, A.F. Ismail, M. Rezaei-DashtArzhandi, and I. Wan Azelee. Biogas as a renewable energy fuel – A review of biogas upgrading utilization and storage. Energy Conversion and Management, 150:277–294, 2017. doi: 10.1016/j.enconman.2017.08.035.
[3] S. Rasi, A. Veijanen, and J. Rintala. Trace compounds of biogas from different biogas production plants. Energy, 32(8):1375–1380, 2007. doi: 10.1016/j.energy.2006.10.018.
[4] E. Ryckebosh, M. Drouillon, and H. Vervaeren. Techniques for transformation of biogas to biomethane. Biomass and Bioenergy, 35(5):1633–1645, 2011. doi: 10.1016/j.biombioe.2011.02.033.
[5] R.J. Spiegel, and J.L. Preston. Test results for fuel cell operation on anaerobic digester gas. Journal of Power Sources, 86(1-2):283–288, 2000. doi: 10.1016/S0378-7753(99)00461-9.
[6] H.-C. Shin, J.-W. Park, K. Park, and H.-C. Song. Removal characteristics of trace compounds of landfill gas by activated carbon adsorption. Environmental Pollution, 119(2):227–236, 2002. doi: 10.1016/s0269-7491(01)00331-1.
[7] R.J. Spiegel and J.L. Preston. Technical assessment of fuel cell operation on anaerobic digester gas at the Yonkers, NY, wastewater treatment plant. Waste Management, 23(8):709–717, 2003. doi: 10.1016/S0956-053X(02)00165-4.
[8] A. Lock, S.K. Aggarwal, I.K. Puri, and U. Hegde. Suppression of fuel and air stream diluted methane-air partially premixed flames in normal and microgravity. Fire Safety Journal, 43(1):24–35, 2008. doi: 10.1016/j.firesaf.2007.02.004.
[9] T. Leung and I. Wierzba. The effect of hydrogen addition on biogas non-premixed jet flame stability in a co-flowing air stream. International Journal of Hydrogen Energy, 33(14):3856–3862, 2008. doi: 10.1016/j.ijhydene.2008.04.030.
[10] A.M. Briones, S.K. Aggarwal, and V. Katta. A numerical investigation of flame liftoff, stabilization, and blowout. Physics of Fluids, 18(4):043603, 2006. doi: 10.1063/1.2191851.
[11] C.-E. Lee and C.-H. Hwang. An experimental study on the flame stability of LFG and LFG-mixed fuels. Fuel, 86(5-6):649–655, 2007. doi: 10.1016/j.fuel.2006.08.033.
[12] L. Xiang, H. Chu, F. Ren, and M. Gu. Numerical analysis of the effect of CO 2 on combustion characteristics of laminar premixed methane/air flames. Journal of the Energy Institute, 92(5):1487–1501, 2019. doi: 10.1016/j.joei.2018.06.018.
[13] N. Hinton and R. Stone. Laminar burning velocity measurements of methane and carbon dioxide mixtures (biogas) over wide ranging temperatures and pressures. Fuel, 116:743–750, 2014. doi: 10.1016/j.fuel.2013.08.069.
[14] S. Jahangirian, A. Engeda, and I.S. Wichman. Thermal and chemical structure of biogas counterflow diffusion flames. Energy and Fuels, 23(11):5312–5321, 2009. doi: 10.1021/ef9002044.
[15] A. Mameri and F. Tabet. Numerical investigation of counter-flow diffusion flame of biogas-hydrogen blends: Effects of biogas composition, hydrogen enrichment and scalar dissipation rate on flame structure and emissions. International Journal of Hydrogen Energy, 41(3):2011–2022, 2016. doi: 10.1016/j.ijhydene.2015.11.035.
[16] J.I. Erete, K.J. Hughes, L. Ma, M. Fairweather, M. Pourkashanian, and A. Williams. Effect of CO 2 dilution on the structure and emissions from turbulent, non-premixed methane-air jet flames. Journal of the Energy Institute, 90(2):191–200, 2017. doi: 10.1016/j.joei.2016.02.004.
[17] M.R.J. Charest, Ö.L. Gülder, and C.P.T. Groth. Numerical and experimental study of soot formation in laminar diffusion flames burning simulated biogas fuels at elevated pressures. Combustion and Flame, 161(10):2678–2691, 2014. doi: 10.1016/j.combustflame.2014.04.012.
[18] H.M. Nicholson and J.P. Field. Some experimental techniques for the investigation of the mechanism of the flame stabilization in the wakes of bluff bodies. Symposium on Combustion and Flame, and Explosion Phenomena, 3(1):44–68, 1948. doi: 10.1016/S1062-2896(49)0008-0.
[19] G.C. Williams and C.W. Shipman. Some properties of rod-stabilized flames C homogenous gas mixtures. Symposium (International) on Combustion, 4(1):733-742, 1953. doi: 10.1016/S0082-0784(53)80096-2.
[20] G.C. Williams, P.T. Woo, and C.W. Shipman. Boundary layer effects on stability characteristics of bluff-body flame holders. Symposium (International) on Combustion, 6(1):427–438, 1957. doi: 10.1016/S0082-0784(57)80058-7.
[21] E.E. Zukoski, and F.E. Marble. Experimental concerning the mechanism of flame blowoff from bluff bodies. Proceedings of the Gas Dynamics Symposium on Aerothermochemistry, 205-210, 1956.
[22] E.E. Zukoski. Flame stabilization on bluff bodies at low and intermediate Reynolds numbers. Ph.D Thesis, California Institute of Technology, Pasadena, United States of America, 1954. doi: 10.7907/E9V0-GM76.
[23] T. Maxworthy. On the mechanism of bluff body flame stabilization at low velocities. Combustion and Flame, 6:233–244, 1962. doi: 10.1016/0010-2180(62)90101-3.
[24] S.I. Cheng and A.A. Kovitz. Theory of flame stabilization by a bluff body. Symposium (International) on Combustion, 7(1):681–691, 1958. doi: 10.1016/S0082-0784(58)80109-5.
[25] A.A. Kovitz and H.-M Fu. On bluff body flame stabilization. Applied Scientific Research, 10:315–334, 1961. doi: 10.1007/BF00411927.
[26] C.-H. Chen and J.S. T’ien. Diffusion flame stabilization at the leading edge of fuel plate. Combustion Science and Technology, 50(4-6):283–306, 1986. doi: 10.1080/00102208608923938.
[27] T. Rohmat, H. Katoh, T. Obara, T. Yoshihashi, and S. Ohyagi. Diffusion flame stabilized on a porous plate in a parallel airstream. AIAA Journal, 36(11):1945–1952, 1998. doi: 10.2514/2.300.
[28] E.D. Gopalakrishnan and V. Raghavan. Numerical investigation of laminar diffusion flames established on a horizontal flat plate in a parallel air stream. International Journal of Spray and Combustion Dynamics, 3(2):161–190, 2011. doi: 10.1260/1756-8277.3.2.161.
[29] P.K. Shijin, S. Soma Sundaram, V. Raghavan, and V. Babu. Numerical investigation of laminar cross flow non-premixed flames in the presence of a bluff-body. Combustion Theory and Modelling, 18(6):692–710, 2014. doi: 10.1080/13647830.2014.967725.
[30] P.K. Shijin, V. Raghavan, and V. Babu. Numerical investigation of flame-vortex interactions in cross flow non-premixed flames in the presence of bluff bodies. Combustion Theory and Modelling, 20(4):683–706, 2016. doi: 10.1080/13647830.2016.1168942.
[31] P.K. Shijin, A. Babu, and V. Raghavan. Experimental study of bluff body stabilized laminar reactive boundary layers. International Journal of Heat and Mass Transfer, 102:219–225, 2016. doi: 10.1016/j.ijheatmasstransfer.2016.06.028.
[32] A. Harish, H.R. Rakesh Ranga, A. Babu, and V. Raghavan. Experimental study of the flame characteristics and stability regimes of biogas-air cross flow non-premixed flames. Fuel, 223:334–343, 2018. doi: 10.1016/j.fuel.2018.03.055.
[33] R.A. Barlow, A.N. Karpetis, J.H. Frank, and J.-Y Chen. Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combustion and Flame, 127(3):2102–2118, 2001. doi: 10.1016/S0010-2180(01)00313-3.
[34] T. Hirano and Y. Kanno. Aerodynamics and thermal structures of the laminar boundary layer over a flat plate with a diffusion flame. Symposium (International) on Combustion, 14(1):391–398, 1973. doi: 10.1016/S0082-0784(73)80038-4.
Go to article

Authors and Affiliations

Alagani Harish
1
ORCID: ORCID
Vasudevan Raghavan
1

  1. Indian Institute of Technology Madras, Chennai, India
Download PDF Download RIS Download Bibtex

Abstract

Gas explosions are major disasters in coal mining, and they typically cause a large number of deaths, injuries and property losses. An appropriate understanding of the effects of combustible gases on the characteristics of methane explosions is essential to prevent and control methane explosions. FLACS software was used to simulate an explosion of a mixture of CH4 and combustible gases (C2H4, C2H6, H2, and CO) at various mixing concentrations and different temperatures (25, 60, 100, 140 and 180℃). After adding combustible gases to methane at a constant volume and atmospheric pressure, the adiabatic flame temperature linearly increases as the initial temperature increases. Under stoichiometric conditions (9.5% CH4-air mixture), the addition of C2H4 and C2H6 has a greater effect on the adiabatic flame temperature of methane than H2 and CO at different initial temperatures. Under the fuel-lean CH4-air mixture (7% CH4-air mixture) and fuel-rich mixture (11% CH4-air mixture), the addition of H2 and CO has a greater effect on the adiabatic flame temperature of methane. In contrast, the addition of combustible gases negatively affected the maximum explosion pressure of the CH4-air mixture, exhibiting a linearly decreasing trend with increasing initial temperature. As the volume fraction of the mixed gas increases, the adiabatic flame temperature and maximum explosion pressure of the stoichiometric conditions increase. In contrast, under the fuel-rich mixture, the combustible gas slightly lowered the adiabatic flame temperature and the maximum explosion pressure. When the initial temperature was 140℃, the fuel consumption time was approximately 8-10 ms earlier than that at the initial temperature of 25℃. When the volume fraction of the combustible gas was 2.0%, the consumption time of fuel reduced by approximately 10 ms compared with that observed when the volume fraction of flammable gas was 0.4%.
Go to article

Bibliography

[1] Z. Li, M. Gong, E. Sun, J. Wu, Y. Zhou, Effect of low temperature on the flammability limits of methane/nitrogen mixtures. Energy 36, 5521-5524 (2011). DOI: https://doi.org/10.1016/j.energy.2011.07.023
[2] B. Su, Z. Luo, T. Wang, J. Zhang, F. Cheng, Experimental and principal component analysis studies on minimum oxygen concentration of methane explosion. Int. J. Hydrog. Energy 45, 12225-12235 (2020). DOI: https://doi. org/10.1016/j.ijhydene.2020.02.133
[3] T. Wang, Z. Luo, H. Wen, F. Cheng, J. Deng, J. Zhao, Z. Guo, J. Lin, K. Kang, W. Wang, Effects of flammable gases on the explosion characteristics of CH4 in air. J. Loss Prev. Process Ind. 49, 183-190 (2017). DOI: https:// doi.org/10.1016/j.jlp.2017.06.018
[4] G. Cui, S. Wang, J. Liu, Z. Bi, Z. Li, Explosion characteristics of a methane / air mixture at low initial temperatures. Fuel 234, 886-893 (2018). DOI: https://doi.org/10.1016/j.fuel.2018.07.139
[5] M. Gieras, R. Klemens, G. Rarata, P. Wolan, Determination of explosion parameters of methane-air mixtures in the chamber of 40 dm 3 at normal and elevated temperature. J. Loss Prev. Process Ind. 19, 263-270 (2006). DOI: https://doi.org/10.1016/j.jlp.2005.05.004
[6] H . Li, J. Deng, C.M. Shu, C.H. Kuo, Y. Yu, X. Hu, Flame behaviours and deflagration severities of aluminium powder-air mixture in a 20-L sphere: Computational fluid dynamics modelling and experimental validation. Fuel 276, 118028 (2020). DOI: https://doi.org/10.1016/j.fuel.2020.118028
[7] M. Mitu, V. Giurcan, D. Razus, M. Prodan, D. Oancea, Propagation indices of methane-air explosions in closed vessels. J. Loss Prev. Process Ind. 47, 110-119 (2017). DOI: https://doi.org/10.1016/j.jlp.2017.03.001
[8] M. Mitu, M. Prodan, V. Giurcan, D. Razus, D. Oancea, Influence of inert gas addition on propagation indices of methane-air deflagrations. Process Saf. Environ. Protect. 102, 513-522 (2016). DOI: https://doi.org/10.1016/j. psep.2016.05.007
[9] B. Su, Z. Luo, T. Wang, C. Xie, F. Cheng, Chemical kinetic behaviors at the chain initiation stage of CH4/H2/air mixture. J. Hazard. Mater. 404, 123680 (2021). DOI: https://doi.org/10.1016/j.jhazmat.2020.123680
[10] X.J. Gu, M.Z. Haq, M. Lawes, R. Woolley, Laminar burning velocity and Markstein lengths of methane-air mixtures. Combust. Flame. 121, 41-58 (2000). DOI: https://doi.org/10.1016/S0010-2180(99)00142-X
[11] L. Liu, Z. Luo, T. Wang, F. Cheng, S. Gao, H. Liang, Effects of initial temperature on the deflagration characteristics and flame propagation behaviors of CH4 and its blends with C2H6, C2H4, CO, and H2. Energy Fuels 35, 785-795 (2021). DOI: https://doi.org/10.1021/acs.energyfuels.0c03506
[12] Z. Luo, L. Liu, F. Cheng, T. Wang, B. Su, J. Zhang, S. Gao, C. Wang, Effects of a carbon monoxide-dominant gas mixture on the explosion and flame propagation behaviors of methane in air. J. Loss Prev. Process Ind. 58, 8-16 (2019). DOI: https://doi.org/10.1016/j.jlp.2019.01.004
[13] M. Reyes, F. V Tinaut, A. Horrillo, A. Lafuente, Experimental characterization of burning velocities of premixed methane-air and hydrogen-air mixtures in a constant volume combustion bomb at moderate pressure and temperature. Appl. Therm. Eng. 130, 684-697 (2018). DOI: https://doi.org/10.1016/j.applthermaleng.2017.10.165
[14] T. Wang, Z. Luo, H. Wen, J. Zhao, F. Cheng, C. Liu, Y. Xiao, J. Deng, Flammability limits behavior of methane with the addition of gaseous fuel at various relative humidities. Process Saf. Environ. Protect. 140, 34 (2019). DOI: https://doi.org/10.1016/j.psep.2020.05.005
[15] T. Wang, Z. Luo, H. Wen, F. Cheng, L. Liu, The explosion enhancement of methane-air mixtures by ethylene in a confined chamber. Energy 214, 119042 (2021). DOI: https://doi.org/10.1016/j.energy.2020.119042
[16] Y. Zhang, C. Yang, Y. Li, Y. Huang, J. Zhang, Y. Zhang, Q. Li, Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion. Fuel 242, 287-294 (2019). DOI : https://doi.org/10.1016/j.fuel.2019.01.043
[17] J. Zhao, J. Deng, T. Wang, J. Song, Y. Zhang, C.M. Shu, Q. Zeng, Assessing the effectiveness of a high-temperatureprogrammed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidation stages. Energy 169, 587-596 (2019). DOI: https://doi.org/10.1016/j.energy.2018.12.100
[18] A.A. Pekalski, H.P. Schildberg, P.S.D. Smallegange, S.M. Lemkowitz, J.F. Zevenbergen, M. Braithwaite, H.J. Pasman, Determination of the explosion behaviour of methane and propene in air or oxygen at standard and elevated conditions. Process Saf. Environ. Protect. 83, 421-429 (2005).
[19] K. Holtappels, Report on the experimentally determined explosion limits, explosion pressures and rates of explosion pressure rise – Part 1: methane, hydrogen and propylene Contact. Explosion 1, 1-149 (2002).
[20] M. Gieras, R. Klemens, G., Experimental Studies of Explosions of Methane-Air Mixtures in a Constant Volume Chamber. Combust. Sci. Technol. 37-41 (2009). DOI: https://doi.org/10.1080/00102200802665102
[21] E. Salzano, F. Cammarota, A. Di Benedetto, V. Di Sarli, Explosion behavior of hydrogene methane / air mixtures. J. Loss Prev. Process Ind. 25, 443-447 (2012). DOI: https://doi.org/10.1016/j.jlp.2011.11.010
[22] K.L. Cashdollar, I.A. Zlochower, G.M. Green, R.A. Thomas, M. Hertzberg, Flammability of methane, propane, and hydrogen gases. J. Loss Prev. Process Ind. 13, 327-340 (2000).
[23] H . Li, J. Deng, X. Chen, C.M. Shu, C.H. Kuo, X. Zhai, Q. Wang, X. Hu, Transient temperature evolution of pulverized coal cloud deflagration in a methane-oxygen atmosphere. Powder Technol. 366, 294-304 (2020). DOI: https://doi.org/10.1016/j.powtec.2020.02.042
[24] S. Zhang, H. Ma, X. Huang, S. Peng, Numerical simulation on methane-hydrogen explosion in gas compartment in utility tunnel. Process Saf. Environ. Protect. 140, 100-110 (2020). DOI: https://doi.org/10.1016/j.psep.2020.04.025
[25] Y. Zhu, D. Wang, Z. Shao, X. Zhu, C. Xu, Y. Zhang, Investigation on the overpressure of methane-air mixture gas explosions in straight large-scale tunnels. Process Saf. Environ. Protect. 135, 101-112 (2019). DOI: https://doi.org/10.1016/j.psep.2019.12.022
[26] J. Deng, F. Cheng, Y. Song, Z. Luo, Y. Zhang, Experimental and simulation studies on the influence of carbon monoxide on explosion characteristics of methane. J. Loss Prev. Process Ind. 36, 45-53 (2015). DOI: https://doi.org/10.1016/j.jlp.2015.05.002
[27] Gexcon, FLACS Manual. Gexcon, 2009.
[28] Z. Luo, R. Li, T. Wang, F. Cheng, Y. Liu, Z. Yu, S. Fan, X. Zhu, Explosion pressure and flame characteristics of CO/CH4/air mixtures at elevated initial temperatures. Fuel 268, 117377 (2020). DOI: https://doi.org/10.1016/j.fuel.2020.117377
Go to article

Authors and Affiliations

Zhenmin Luo
1 2
ORCID: ORCID
Litao Liu
1 2
ORCID: ORCID
Shuaishuai Gao
1 2
ORCID: ORCID
Tao Wang
1 2 3
ORCID: ORCID
Bin Su
1 2
ORCID: ORCID
Lei Wang
1 2
ORCID: ORCID
Yong Yang
4 2
ORCID: ORCID
Xiufang Li
4
ORCID: ORCID

  1. Xi’an University of Science and Technology, School of Safety Science & Engineering, 58, Yanta Mid. Rd., Xi’an, 710054, Shaanxi, PR China
  2. Shaanxi Key Laboratory of Prevention and Control of Coal Fire, 58, Yanta Mid. Rd, Xi’an, 710054, Shaanxi, PR China
  3. Xi’an University of Science and Technology, Postdoctoral Program, 58, Yanta Mid. Rd., Xi’an 710054, Shaanxi, PR China
  4. Xi’an University of Science and Technology, School of Safety Science & Engineering, 58, Yanta Mid. Rd., Xi’an, 710054, Shaanxi, PR
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to estimate the content of trace elements: zinc, cadmium, lead, molybdenum and nickel in products and wastes of coal treatment from Upper-Silesian Basin. Two analytical methods were applied: atomic absorption spectrometry (FAAS, ETAAS) and anodic (ASY) and adsorptive stripping voltammetry (AdSY). ASY is used to determine zinc, cadmium and lead; AdSY molybdenum and nickel, and FAAS and ETAAS to determine all elements. In the case of Zn, Ni, Mo, Pb and Cd determined by FAAS (ETAAS) the concentrations were practically the same as those obtained by ASY or AdSY.
Go to article

Authors and Affiliations

Krystyna Srogi
Mariusz Minkina
Download PDF Download RIS Download Bibtex

Abstract

Levels and distribution of selected polybrorninated diphenyl ether congeners in dust samples taken from different indoor environments in Lublin, South-Eastern Poland, are reported. The most abundant congeners, found in the majority of sampling sites, were BOE 47, 100 and 28, respectively. The highest levels of examined congeners were observed in dust samples taken from a computer repair facility and labs. BOE 47, 99 and 100, occurring at highest levels and having the greatest contribution confirm that in Polish indoor environments polymer products contain Penta - BOE technical mixture.
Go to article

Authors and Affiliations

Amelia Staszowska
Bernard Połednik
Marzenna R. Dudzińska
Jacek Czerwiński
Download PDF Download RIS Download Bibtex

Abstract

Thanks to dyeing of polymers, the possibilities of their use are constantly increasing. It is equally important to use additives that will have several functions. A perfect example is titanium dioxide used as an optical brightener and a flame retardant at the same time. Mostly it is used in the form of a powder. However, there are no studies where TiO2 is used as a colourbatch based on the different polymer matrix.
The aim of the work was to investigate the effect of titanium white in the form of colourbatch on the flammability and selected properties of mouldings produced in various processing conditions. Colourbatch based on PS matrix, was used in the research. The variable processing parameters were: injection temperature Tw, volume flow rate Vw, residence time and the addition of a colourbatch. On the basis of the measurements, it was found that the processing conditions and the addition of the colourbatch have low effect on the hardness of the mouldings, which was in the range from 75.59o Sh D (Shore type D) to 81.95o Sh D. It was also noted that the addition of colourbatch with TiO2 and increasing injection temperature reduces impact strength even by several dozen percent. Moreover, it was found that use of TiO2 causes a delay in the ignitability of the samples in selected cases. It is difficult to determine whether the variable processing conditions or the addition of TiO2 on the PS matrix have a greater impact on the ignitability of the moulded parts.
Go to article

Authors and Affiliations

M. Trzaskalska
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, 21 Armii Krajowej Av., 42-201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Biogas is a gaseous biofuel predominantly composed of methane and carbon-dioxide. Stability of biogas flames strongly depend upon the amount of carbon-dioxide present in biogas, which varies with the source of biomass and reactor. In this paper, a comprehensive study on the stability and flame characteristics of coflow biogas diffusion flames is reported. Numerical simulations are carried out using reactive flow module in OpenFOAM, incorporated with variable thermophysical properties, Fick’s and Soret diffusion, and short chemical kinetics mechanism. Effects of carbon-dioxide content in the biogas, temperatures of the fuel or coflowing air streams (preheated reactant) and hydrogen addition to fuel or air streams are analyzed. Entropy generation in these flames is also predicted. Results show that the flame temperature increases with the degree of preheat of reactants and the flames show better stability with the preheated air stream. Preheating the air contributes to increased flame stability and also to a significant decrease in entropy generation. Hydrogen addition, contributing to the same power rating, is seen to be relatively more effective in increasing the flame stability when added to the fuel stream. Results in terms of flow, temperature, species and entropy fields, are used to describe the stability and flame characteristics.
Go to article

Bibliography

[1] Z. Recebli, S. Selimli, M. Ozkaymak, and O. Gonc. Biogas production from animal manure. Journal of Engineering Science and Technology, 10(6):722–729, 2015.
[2] S. Rasi, A.Veijanen, and J. Rintala. Trace compounds of biogas from different biogas production plants. Energy, 32(8):1375–1380, 2007. doi: 10.1016/j.energy.2006.10.018.
[3] O. Jonsson, E. Polman, J.K. Jensen, R. Ekund, H. Schyl, and S. Ivarsson. Sustainable gas enters the European gas distribution system. In World Gas Conference, Tokyo, Japan, 2003.
[4] I.U. Khan, M.H.D. Othman, H. Hashim, T. Matsuura, A.F. Ismail, M. Rezaei-DashtArzhandi, and I.W. Azelee. Biogas as a renewable energy fuel – a review of biogas upgrading, utilization and storage. Energy Conversion and Management, 150:277–294, 2017. doi: 10.1016/j.enconman.2017.08.035.
[5] H.O.B. Nonaka and F.M. Pereira. Experimental and numerical study of CO 2 content effects on the laminar burning velocity of biogas. Fuel, 182:382–390, 2016. doi: j.fuel.2016.05.098.
[6] M.S. Abdallah, M.S. Mansour, and N.K. Allam. Mapping the stability of free-jet biogas flames under partially premixed combustion. Energy, 220:119749, 2021. doi: 10.1016/j.energy.2020.119749.
[7] L. Zhang, X. Ren, R. Sun, andY.A. Levendis. A numerical and experimental study on the effects of CO 2 on laminar diffusion methane/air flames. Journal of Energy Resources Technology, 142(8):82307, 2020. doi: 10.1115/1.4046228.
[8] T. Leung and I. Wierzba. The effect of hydrogen addition on biogas non-premixed jet flame stability in a co-flowing air stream. International Journal of Hydrogen Energy, 33(14):3856–3862, 2008. doi: 10.1016/j.ijhydene.2008.04.030.
[9] S. Verma, K. Kumar, L.M. Das, and S.C. Kaushik. Effects of hydrogen enrichment strategy on performance and emission features of biodiesel-biogas dual fuel engine using simulation and experimental analyses. Journal of Energy Resources Technology, 143(9):092301, 2021. doi: 10.1115/1.4049179.
[10] H.S. Zhen, C.W. Leung, and C.S. Cheung. Effects of hydrogen addition on the characteristics of a biogas diffusion flame. International Journal of Hydrogen Energy, 38(16):6874–6881, 2013. doi: 10.1016/j.ijhydene.2013.02.046.
[11] H.S. Zhen, C.W. Leung, and C.S. Cheung. A comparison of the heat transfer behaviors of biogas–H 2 diffusion and premixed flames. International Journal of Hydrogen Energy, 39(2):1137–1144, 2014. doi: 10.1016/j.ijhydene.2013.10.100.
[12] H.S. Zhen, Z.L. Wei, Z.B. Chen, M.W. Xiao, L.R. Fu, and Z.H. Huang. An experimental comparative study of the stabilization mechanism of biogas-hydrogen diffusion flame. International Journal of Hydrogen Energy, 44(3):1988–1997, 2019. doi: 10.1016/j.ijhydene.2018.11.171.
[13] M.R.J. Charest, Ö.L. Gülder, and C.P.T. Groth. Numerical and experimental study of soot formation in laminar diffusion flames burning simulated biogas fuels at elevated pressures. Combustion and Flame, 161(10):2678–2691, 2014. doi: 10.1016/j.combustflame.2014.04.012.
[14] Z.L.Wei, C.W. Leung, C.S. Cheung, and Z.H. Huang. Effects of H 2 andCO 2 addition on the heat transfer characteristics of laminar premixed biogas-hydrogen Bunsen flame. International Journal of Heat Mass Transfer, 98:359–366, 2016. doi: 10.1016/j.ijheatmasstransfer.2016.02.064.
[15] A. Mameri and F. Tabet. Numerical investigation of counter-flow diffusion flame of biogas-hydrogen blends: Effects of biogas composition, hydrogen enrichment and scalar dissipation rate on flame structure and emissions. International Journal of Hydrogen Energy, 41 (3):2011–2022, 2016. doi: 10.1016/j.ijhydene.2015.11.035.
[16] X. Li, S. Xie, J. Zhang, T. Li, and X. Wang. Combustion characteristics of non-premixed CH 4/CO 2 jet flames in coflow air at normal and elevated temperatures. Energy, 214:118981, 2021. doi: 10.1016/j.energy.2020.118981.
[17] A.V. Prabhu, A. Avinash, K. Brindhadevi, and A. Pugazhendhi. Performance and emission evaluation of dual fuel CI engine using preheated biogas-air mixture. Science of The Total Environment, 754:142389, 2021. doi: 10.1016/j.scitotenv.2020.142389.
[18] M.H. Moghadasi, R. Riazi, S. Tabejamaat, and A. Mardani. Effects of preheating and CO 2 dilution on Oxy-MILD combustion of natural gas. Journal of Energy Resources Technology, 141(12):12200, 2019. doi: 10.1115/1.4043823.
[19] A. Harish, H.R. Rakesh Ranga, A. Babu, and V. Raghavan. Experimental study of the flame characteristics and stability regimes of biogas – air cross flow non-premixed flames. Fuel, 223:334–343, 2018. doi: 10.1016/j.fuel.2018.03.055.
[20] G. Tsatsaronis, T. Morosuk, D. Koch, and M. Sorgenfrei. Understanding the thermodynamic inefficiencies in combustion processes. Energy, 62:3–11, 2013. doi: 10.1016/j.energy.2013.04.075.
[21] A. Datta. Entropy generation in a confined laminar diffusion flame. Combustion Science and Technology, 159(1):39–56, 2000. doi: 10.1080/00102200008935776.
[22] K.M. Saqr and M.A. Wahid. Entropy generation in turbulent swirl-stabilized flame: Effect of hydrogen enrichment. Applied Mechanics and Materials, 388:280–284, 2013. doi: 10.4028/www.scientific.net/AMM.388.280.
[23] H.R. Arjmandi and E. Amani. A numerical investigation of the entropy generation in and thermodynamic optimization of a combustion chamber. Energy, 81:706–718, 2015. doi: 10.1016/j.energy.2014.12.077.
[24] A.M. Briones, A. Mukhopadhyay, and S.K. Aggarwal. Analysis of entropy generation in hydrogen-enriched methane–air propagating triple flames. International Journal of Hydrogen Energy, 34(2):1074–1083, 2009. doi: 10.1016/j.ijhydene.2008.09.103.
[25] K. Nishida, T. Takagi, and S. Kinoshita. Analysis of entropy generation and exergy loss during combustion. Proceedings of the Combustion Institute, 29(1):869–874, 2002. doi: 10.1016/S1540-7489 (02)80111-0.
[26] W. Wang, Z. Zuo, J. Liu, and W. Yang. Entropy generation analysis of fuel premixed CH 4/H 2/air flames using multistep kinetics. International Journal of Hydrogen Energy, 41(45):20744–20752, 2016. doi: 10.1016/j.ijhydene.2016.08.103.
[27] R.S. Barlow, N.S.A. Smith, J.Y. Chen, and R.W. Bilger. Nitric oxide formation in dilute hydrogen jet flames: isolation of the effects of radiation and turbulence–chemistry sub models. Combustion and Flame, 117(1-2):4–31, 1999. doi: 10.1016/S0010-2180(98)00071-6.
[28] J.O. Hirschfelder, C.F. Curtiss, and R.B. Bird. Molecular Theory of Gases and Liquids. Wiley, New York, 1954.
[29] K.K.Y. Kuo. Principles of Combustion. Wiley, New York, 1986.
[30] C.T. Bowman, R.K. Hanson, D.F. Davidson, W.C. Gardiner, Jr., V. Lissianski, G.P. Smith, D.M. Golden, M. Frenklach, and M. Goldenberg. GRI_Mech 2.11. Available: http://combustion.berkeley.edu/gri-mech/new21/version21/text21.html.
[31] D.N. Pope, V. Raghavan, and G. Gogos. Gas-phase entropy generation during transient methanol droplet combustion. International Journal of Thermal Sciences, 49(7):1288–1302, 2010. doi: 10.1016/j.ijthermalsci.2010.02.012.
[32] A.V. Mokhov, B.A.V Bennett, H.B. Levinsky, and M.D. Smooke. Experimental and computational study of C 2H 2 and CO in a laminar axisymmetric methane-air diffusion flame. Proceedings of the Combustion Institute, 31(1):997–1004, 2007. doi: 10.1016/j.proci.2006.08.094.
[33] J. Lim, J. Gore, and R. Viskanta. A study of the effects of air preheat on the structure of methane/air counterflow diffusion flames. Combustion and Flame, 121(1-2):262–274, 2000. doi: 10.1016/S0010-2180(99)00137-6.
[34] H.S. Zhen, J. Miao, C.W. Leung, C.S. Cheung, and Z.H. Huang. A study on the effects of air preheat on the combustion and heat transfer characteristics of Bunsen flames. Fuel, 184:50–58, 2016. doi: 10.1016/j.fuel.2016.07.007.
[35] C.J. Sung, J.B. Liu, and C.K. Law. Structural response of counterflow diffusion flames to strain rate variations. Combustion and Flame, 102(4):481–492, 1995. doi: 10.1016/0010-2180(95)00041-4.
Go to article

Authors and Affiliations

R. Nivethana Kumar
1
S. Muthu Kumaran
1
Vasudevan Raghavan
1

  1. Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai – 600036, India
Download PDF Download RIS Download Bibtex

Abstract

Inexpensive synthesis of electroceramic materials is required for efficient energy storage. Here the design of a scalable process, flame spray pyrolysis (FSP), for synthesis of size-controlled nanomaterials is investigated focusing on understanding the role of air entrainment (AE) during their aerosol synthesis with emphasis on battery materials. The AE into the enclosed FSP reactor is analysed quantitatively by computational fluid dynamics (CFD) and calculated temperatures are verified by Fourier transform infrared spectroscopy (FTIR). Various Li4Ti5O12 (LTO) particle compositions are made and characterized by N2 adsorption, electron microscopy and X-ray diffraction while the electrochemical performance of LTO is tested at various charging rates. Increasing AE decreases recirculation in the enclosing tube leading to lower reactor temperatures and particle concentrations by air dilution as well as shorter and narrower residence time distributions. As a result, particle growth by coagulation - coalescence decreases leading to smaller primary particles that are mostly pure LTO exhibiting high C-rate performance with more than 120 mAh/g galvanostatic specific charge at 40C, outperforming commercial LTO. The effect of AE on FSP-made particle characteristics is demonstrated also in combustion synthesis of LiFePO4 and ZrO2.

Go to article

Authors and Affiliations

Oliver Waser
Oliver Brenner
Arto J. Groehn
Sotiris E. Pratsinis
Download PDF Download RIS Download Bibtex

Abstract

The methods arc described for determinations of Al, Fe, Ca, Mg, Ba, Cr, Mn, Ni, Cu, Zn, Pb, Cd, V and Sr in botanical, coal fly ash and soil samples by flame atomic absorption spectrometry (FAAS), and inductively coupled plasma atomic emission spectrometry (!CP-AES). Special attention has been paid to sample preparation, an important stage at which a sample is explored to contaminants. Results of the analysis of all samples arc discussed.
Go to article

Authors and Affiliations

Krystyna Srogi

This page uses 'cookies'. Learn more