Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

For successful active control with a vibrating plate it is essential to appropriately place actuators. One of the most important criteria is to make the system controllable, so any control objectives can be achieved. In this paper the controllability-oriented placement of actuators is undertaken. First, a theoretical model of a fully clamped rectangular plate is obtained. Optimization criterion based on maximization of controllability of the system is developed. The memetic algorithm is used to find the optimal solution. Obtained results are compared with those obtained by the evolutionary algorithm. The configuration is also validated experimentally.
Go to article

Authors and Affiliations

Stanisław Wrona
Marek Pawełczyk
Download PDF Download RIS Download Bibtex

Abstract

It is possible to enhance acoustic isolation of the device from the environment by appropriately controlling vibration of a device casing. Sound insulation efficiency of this technique for a rigid casing was confirmed by the authors in previous publications. In this paper, a light-weight casing is investigated, where vibrational couplings between walls are much greater due to lack of a rigid frame. A laboratory setup is described in details. The influence of the cross-paths on successful global noise reduction is considered. Multiple vibration actuators are installed on each of the casing walls. An adaptive control strategy based on the Least Mean Square (LMS) algorithm is used to update control filter parameters. Obtained results are reported, discussed, and conclusions for future research are drawn.

Go to article

Authors and Affiliations

Stanisław Wrona
Marek Pawelczyk
Download PDF Download RIS Download Bibtex

Abstract

In this paper, existing knowledge on the behaviour of soil-steel composite structures (SSCSs) has been reviewed. In particular, the response of buried corrugated steel plates (CSPs) to static, semistatic, and dynamic loads has been covered. Furthermore, the performance of SSCS under extreme loading, i.e., loading until failure, has been studied. To investigate the behaviour of the type of composite structures considered, numerous full-scale tests and numerical simulations have been conducted for both arched and box shapes of the shell. In addition, researchers have examined different span lengths and cover depths. Furthermore, to enhance the load-bearing capacity of the composite structures, various stiffening elements have been applied and tested. The reviewshows that the mechanical features of SSCSs are mainly based on the interaction of the shell with the soil backfill. The structures, as a composite system, become appropriately stiff when completely backfilled. For this reason, the construction phase corresponds to the highest values of shell displacement and stress. Moreover, the method of laying and compacting the backfill, as well as the thickness of the cover, has a significant impact on the behaviour of the structure at the stage of operation in both the quantitative and qualitative sense. Finally, a limited number of studies are conducted on the ultimate bearing capacity of large-span SSCS and various reinforcing methods. Considerably more works will need to be done on this topic. It applies to both full scale tests and numerical analysis.
Go to article

Authors and Affiliations

Alemu Mosisa Legese
1
ORCID: ORCID
Maciej Sobótka
1
ORCID: ORCID
Czesław Machelski
1
ORCID: ORCID
Adrian Różański
1
ORCID: ORCID

  1. Wrocław University of Science and Technology, Faculty of Civil Engineering, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

This page uses 'cookies'. Learn more