Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the paper flow dynamic similarity criteria have been presented to reflect the macroscopic flow pattern in the combustion chamber of large-scale circulating fluidised bed boilers. The proposed scaling rules have been verified on two cold models of CFB boilers operating in Tauron Wytwarzanie S.A. - El. Lagisza division (scale factor 1/20) and Fortum Power and Heat Poland Sp. z o. o. Czestochowa division (scale factor 1/10) – working with the power of 966 MWth and 120 MWth, respectively. As follows from the results of measurements, regardless of CFB boiler’s geometry the use of a defined set of criterial numbers allows to obtain satisfactory agreement between the suspension density distributions registered in the CFB boilers and scaling models.

Go to article

Authors and Affiliations

Paweł Mirek
Marcin Klajny
Download PDF Download RIS Download Bibtex

Abstract

Based on hydrodynamic data, Kato-Wen and Kunii-Levenspiel bubbling-bed model parameters, supplemented with assumptions characteristic for tested confined fluidised bed, were analysed. The calculated bubble diameters and the bed composition proved essential influence of inter-particle space of packed compacted component onto fluidisation character. The usability of the conducted model analysis was also confirmed. Finally, it can be concluded that Kunii-Levenspiel and Kato- Wen models with characteristic assumptions (for the tested bed) can be applied for calculation of the confined fluidised bed layer porosity. Discrepancies of ε f value, determined on the basis of the above mentioned bubbling-bed models do not exceed 8% of the error. The model parameters obtained from the matching the model relations to experimental data εf = f(u0) allow an analysis of the fluidisation character as well as gas velocity regime and the fluidised bed structural composition identification. A description of the regime of the process in which confined fluidised bed is characterised with an increase of mass and heat transfer rate is also possible using relation (17) derived in the present study.

Go to article

Authors and Affiliations

Piotr Zabierowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a review of current achievements in the Electrical Capacitance Tomography (ECT) in relation to its possible applications in the study of phenomena occurring in fluidised bed reactors. Reactors of that kind are being increasingly used in chemical engineering, energetics (fluidised bed boilers) or industrial dryers. However, not all phenomena in the fluidised bed have been thoroughly understood. This results in the need to explore and develop new research methods. Various aspects of ECT operation and data processing are described with their applicability in scientific research. The idea for investigation of temperature distribution in the fluidised bed, using multimodal tomography, is also introduced. Metrological requirements of process tomography such as sensitivity, resolution, and speed of data acquiring are noted.

Go to article

Authors and Affiliations

Jan Porzuczek
Download PDF Download RIS Download Bibtex

Abstract

Rock and gas outburst is a phenomenon in which fragmented rock material is transported deep into a pit. The transport of rock material by gas is a two-phase process. The article deals with the fluidisation of rock material. Considerations on the fluidisation phenomenon were carried out, and experiments were performed to help clarify whether the fluidisation of dolomite is possible. In the last chapter, a discussion was carried out, and the results obtained were analysed regarding the possibility of occurrence in mine conditions.
Go to article

Authors and Affiliations

Katarzyna Kozieł
1
ORCID: ORCID
Norbert Skoczylas
2
ORCID: ORCID

  1. Strata Mechanics Research Institute of the Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland
  2. AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland

This page uses 'cookies'. Learn more