Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 56
items per page: 25 50 75
Sort by:
Keywords fly ash REE leaching
Download PDF Download RIS Download Bibtex

Abstract

The aim of the work was to draw attention to the usefulness of the alkaline thermal activation process with sodium hydroxide in the process of rare earth metal leaching (REE), from fly ash with hydrochloric acid and nitric acid(V). The work is a part of the authors’ own research aimed at optimizing the REE recovery process coming from fly ash from hard coal combustion.

The article contains an assessment of the possibility of leaching rare earth metals (REE) from fly ash originating from the combustion of hard coal in one of the Polish power plants. The process was carried out for various samples consisting of fly ash and sodium hydroxide and for different temperatures and reaction times. The process was carried out for samples consisting of fly ash and sodium hydroxide containing respectively 10, 20 and 30% on NaOH by weight in relation to the weight of fly ash. Homogenization of these mixtures was carried out wet, and then they were baked at 408K, 433K and 473K, for a period of three hours. The mixture thus obtained was ground to a particle size of less than 0.1 mm and washed with hot water to remove excessive NaOH. The solid post-reaction residue was digested in concentrated HCl at 373K for 1 hour at a weight ratio fs/fc of 1:10. The results of chemical analysis and scanning microscopic analysis along with EDS analysis and X-ray analysis were used to characterize the physicochemical properties of the tested material.

The results indicated that REE recovery from fly ash strictly depends on heat treatment temperature with NaOH, and an increase in REE recovery from alkaline-activated fly ash along with increasing the amount of NaOH in relation to fly ash mass.

Go to article

Authors and Affiliations

Sylwester Żelazny
Henryk Świnder
ORCID: ORCID
Andrzej Jarosiński
Barbara Białecka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The galvanic sludges contain a number of toxic heavy metals, potentially mobilized as chemically active ions under environmental conditions as. This study explores the application of fly ash-based geopolymers for the removal of Zn ions from galvanizing sludge. In this study, geopolymers, synthesized via the geopolymerization method, were used to remove Zn from post-galvanized sewage sludge. Two types of geopolymers were used, derived from ash from coal combustion and biomass combustion. Structural, morphological, and surface properties were characterized using FTIR and SEM, respectively. In addition, BET and Langmuir isotherms, along with analyses such as t-Plot and BJH method for porous solids were conducted. The results indicate that the geopolymer derived from coal combustion ash is a more effective sorbent for Zn(II) ions, exhibiting a removal efficiency of 99.9%, compared to 40.7% for the geopolymer derived from biomass combustion ash. The FTIR spectra analysis reveals the presence of bonds between the -OH and/or Si-OH groups on the geopolymers’ surface and the Zn(II) ions. The environmentally and economically advantageous process maximizes the recovery of a valuable component at minimal cost, yielding relatively clean monometallic waste suitable for reuse.
Go to article

Bibliography

[1]. Adewuyi, YG. (2021). Recent Advances in Fly-Ash-Based Geopolymers: Potential on the Utilization for Sustainable Environmental Remediation, ACS Omega, 24, pp. 15532-15542. DOI:10.1021/acsomega.1c00662
[2]. Akono, A.T., Koric, S. & Kriven, W.M. (2019). Influence of pore structure on the strength behavior of particle- and fiber reinforced metakaolin-based geopolymer composites, Cement and Concrete Composites, 104, pp. 103361. DOI:10.1016/j.cemconcomp.2019.103361
[3]. Alehyen, S., Zerzouri, M., el Alouani, M., el Achouri, M. & Taibi M. (2017). Porosity and fire resistance of fly ash based geopolymer. Journal of Materials and Environmental Sciences, 8, pp. 3676-3689
[4]. Ayilara, M.S., Olanrewaju, O.S., Babalola, O.O. & Odeyemi, O. (2020). Waste management through composition: Challenges and Potentials, Sustainability, 12, pp. 4456-4479. DOI:10.3390/su12114456
[5]. Barakat, M.A. (2003). The pyrometallurgical processing of galvanizing zinc ash and flue dust, Journal of Minerals, Metals & Materials Society, 55, pp. 26–29. DOI:10.1007/s11837-003-0100-4
[6]. Bednarik, M., Vondruska, M.& Koutny, M. (2005). Stabilization/solidification of galvanic sludges by asphalt emulsions, Journal of Hazardous Materials, 122, pp. 139-145. DOI:10.1016/j.jhazmat.2005.03.021
[7]. Brylewska, K., Rożek, P., Król, M. & Mozgawa, W. (2018). The influence of dealumination/desilication on structural properties of metakaolin-based geopolymers, Ceramics International, 44, pp. 12853-12861. DOI:10.1016/J.CERAMINT.2018.04.095
[8]. Butenegro, J.A., Bahrami, M., Abenojar, J. & Martínez, M.A. (2021). Recent Progress in Carbon Fiber Reinforced Polymers Recycling: A Review of Recycling Methods and Reuse of Carbon Fibers, Materials, 14, pp. 6401. DOI:10.3390/ma14216401
[9]. Donohue, M.D. & Aranovich, G.L. (1998). Adsorption hysteresis in porous solids, Journal of Colloid and Interface Science, 205, pp. 121-130. DOI:10.1006/jcis.1998.5639
[10]. Dvořák, P. & Jandova, J. (2005). Hydrometallurgical recovery of zinc from hot dip galvanizing ash, Hydrometallurgy, 77, pp. 29-33. DOI:10.1016/j.hydromet.2004.10.007
[11]. Galas, D., Kalembkiewicz, J. & Sitarz-Palczak, E. (2016). Physicochemistry, morphology and leachability of selected metals from post-galvanized sewage sludge from screw factory in Łańcut, SE Poland, Contemporary Trends in Geoscience, 5, pp. 83-91. DOI:10.1515/ctg-2016-0006
[12]. Jha, M.K., Kumar, V.& Singh R.J. (2001). Review of hydrometallurgical recovery of zinc from industrial wastes, Resources, Conservation and Recycling, 33, pp. 1-22. DOI:10.1016/S0921-3449(00)00095-1
[13]. Imtiaz, L., Rehman, S.K.U., Memon, S.A., Khan, M.K. & Javed, M.F. (2020). A review of recent developments and advances in eco-friendly geopolymer concrete, Applied Sciences, 10, pp. 7838-7894. DOI:10.3390/app10217838
[14]. Irisawa, T., Iwamura, R., Kozawa, Y., Kobayashi, S. & Tanabe, Y. (2021). Recycling methods for thermoplastic-matrix composites having high thermal stability in focusing on reuse of the carbon fibers, Carbon, 175, pp. 605. DOI:10.1016/j.carbon.2021.01.042
[15]. Jeyasundar, P.G.S.A., Ali, A. & Zhang, Z. (2020). Waste treatment approaches for environmental sustainability, Microorganisms for Sustainable Environmental and Health, 6, pp. 119-135. DOI:10.1016/B978-0-12-819001-2.00006-1
[16]. Khan, M.N.N., Kuri, J.C. & Sarker, P.K. (2021). Effect of waste glass powder as a partial precursor in ambient cured alkali activated fly ash and fly ash-GGBFS mortars, Journal of Building. Engineering, 34, pp. 101934-101945. DOI:10.1016/j.conbuildmat.2020.120177
[17]. Kriven W.M., Bell J.L. & Gordon M. (2006). Microstructure and Microchemistry of Fully-Reacted Geopolymers and Geopolymer Matrix Composites. In: Bansal, N.P., Singh, J.P., Kriven, W.M., Schneider, H., Advances in Ceramic Matrix Composites IX (pp. 227-250). The American Ceramic Society, Wiley, New York 2006.
[18]. Krishnan, S., Zulkapli, N.S., Kamyab, H., Taib, S.M., Bin Md Din, M.F., Majid, Z.A., Chaiprapat, S., Kenzo, I., Ichikawa, Y., Nasrullah, M., Chelliapan, S. & Othman, N. (2021). Current technologies for recovery of metals from industrial wastes: An overview, Environmental Technology & Innovation, 22, pp.101525. DOI:10.1016/j.eti.2021.101525
[19]. Król, M., Rożek, P., Chlebda ,D. & Mozgawa, W. (2018). Influence of alkali metal cations/type of activator on the structure of alkali-activated fly ash - ATR-FTIR studies, Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy, 198, pp. 33-37. DOI:https://doi.org/10.1016/j.saa.2018.02.067
[20]. Krstić, I., Zec, S., Lazarević, V., Stanisavljević, M. & Golubović, T (2018). Use of sintering to immobilize toxic metals present in galvanic sludge into a stabile glass-ceramic structure, Science of Sintering, 50, pp. 139-147. DOI:10.2298/SOS1802139K
[21]. Kwon, O-S. & Sohn, I.L. (2020). Fundamental thermokinetic study of a sustainable lithium-ion battery pyrometallurgical recycling process, Resources, Conservation and Recycling, 158, pp. 104809. DOI:10.1016/j.resconrec.2020.104809.
[22]. Letcher, R.M.b& Vallero, D.A. (2019). Waste. A Handbook for Management, 2, pp. 585-630. DOI:10.1016/B978-0-12-381475-3.10034-8
[23]. Li, M., Xu, J. & Li, B. (2018). Analysis of development of hazardous waste disposal technology in China, IOP Conf. Series: Earth and Environmental Science, 178, pp. 1-7. DOI:10.1088/1755-1315/178/1/012027
[24]. Luo, X., Liu, G., Xia, Y., Chen, L., Jiang, Z., Zheng, H. & Wang, Z. (2017). Use of biochar-compost to improve properties and productivity of the degraded coastal soil in the Yellow River Delta China, Journal of Soil and Sediments, 17, pp. 780-789. DOI:10.1007/s11368-016-1361-1
[25]. Luukkonen, T., Runtti, H., Niskanen, M., Tolonen, E., Sarkkinen, M., Kemppainen, K.,Rämö, J. & Lassi, U. (2016). Simultaneous removal of Ni(II), As(III), and Sb(III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers, Journal of.Environmental Management, 166, pp. 579-588. DOI:10.1016/j.jenvman.2015.11.007
[26]. Luz, C.A., Rocha, J.C., Cheriaf, M. & Pera, ,J. (2009). Valorization of galvanic sludge in sulfoaluminate cement, Construction and Building Materials, 23, pp. 595-601. DOI:10.1016/j.conbuildmat.2008.04.004
[27]. Makisha, N. & Yunchina, M. (2017). Methods and solutions for galvanic waste water treatment, MATEC Web of Conferences, 106, pp. 1-6. DOI:10.1051/matecconf/201710607016
[28]. Nanda, S. & Berruti, F. (2021). Municipal solid waste management and landfilling technologies: a review, Environmental Chemical Letter, 19, pp. 1433-1456. DOI:10.1007/s10311-020-01100-y
[29]. Pu, S., Duan, P., Yan, C. & Ren, D. (2016). Influence of sepiolite addition on mechanical strength and microstructure of fly ash-metakaolin geopolymer paste. Advanced Powder Technology,27, pp. 2470-2477. DOI:10.1016/j.apt.2016.09.002
[30]. Riaz, M., Bing Chen, A., Aminul Haque, M. & Shah, S.F.A. (2020). Utilization of industrial and hazardous waste materials to formulate energy-efficient hygrothermal biocomposites, Journal of Cleaner Production, 250, pp. 119469. DOI:10.1016/j.jclepro.2019.119469
[31]. Rossini, G. & Bernardes, A.M. (2006). Galvanic sludge metals recovery by pyrometallurgical and hydrometallurgical treatment, Journal of Hazardous Materials, 131, pp. 210-216. DOI:10.1016/j.jhazmat.2005.09.035.
[32]. Rudnik, E. (2019). Investigation of industrial waste materials for hydrometallurgical recovery of zinc, Minerals Engineering,139, pp. 105871. DOI:10.1016/j.mineng.2019.105871
[33]. Rybak, J., Gorbatyuk, S.M., Bujanovna-Syuryun, K.C., Khairutdinov, A., Tyulyaeva, Y. & Makarov, P.S. (2021). Utilization of Mineral Waste: A Method for Expanding the Mineral Resource Base of a Mining and Smelting Company, Metallurgist, 64, pp. 851-861. DOI:10.1007/s11015-021-01065-5
[34]. Sanito, R.C., Bernuy-Zumaeta, M., You, S-J. & Wang Y-F. (2022). A review on vitrification technologies of hazardous waste, Journal of Environmental Management, 316, pp. 115243. DOI:10.1016/j.jenvnman.2022.115243
[35]. Sinha, S., R. Choudhari, R., Mishra, D., Shekhar, S., Agrawal, A. & Sahu, K.K. (2020). Valorisation of waste galvanizing dross: Emphasis on recovery of zinc with zero effluent strategy, Journal of Environmental Management, 256, pp. 109985. DOI:10.1016/j.jenvman.2019.109985
[36]. Sitarz–Palczak, E.; Kalembkiewicz, J. & Galas, D. (2019). Comparative study on the characteristics of coal fly ash and biomass ash geopolymers, Archives of Environmental Protection 45, pp. 126-135. DOI:10.24425/aep.2019.126427
[37]. Stepanov, S., Morozov, N., Morozova, N., Ayupov, D., Makarov, D. & Baishev, D. (2016). Efficiency of Use of Galvanic Sludge in Cement Systems, Procedia Engineering, 165, pp.1112-1117. DOI:10.1016/j.proeng.2016.11.827
[38]. Świerk, K., Bielicka, A., Bojanowska, I. & Maćkiewicz, Z. (2007). Investigation of Heavy Metals Leaching from industrial wastewater sludge, Polish Journal of Environmental Studies, 16, pp. 447-451.
[39]. Šćiban, M., Radetić, B., Kevrešan, Z. & Klašnja, M. (2007). Adsorption of heavy metals from electroplating wastewater by wood sawdust, Bioresource Technology, 98, pp. 402-409. DOI:10.1016/j.biortech.2005.12.014
[40]. Toledo, M., Siles, J.A., Gutierrez, M.C. & Martin, M.A. (2018). Monitoring of the composting process of different agroindustrial waste: influence of the operational variables on the odorous impact, Waste Management, 76, pp. 266-274. DOI:10.1016/j.wasman.2018.03.042
[41]. Ugwu, E.I. & Agunwamba, J.C. (2020). A review on the applicability of activated carbon derived from plant biomass in adsorption of chromium, copper, and zinc from industrial wastewater, Environmental Monitoring and Assessment, 192, pp. 240-252. DOI:10.1007/s10661-020-8162-0
[42]. Yang, J., Firsbach, F. & Sohn, I.L. (2022). Pyrometallurgical processing of ferrous slag “co-product” zero waste full utilization: A critical review, Resources, Conservation and Recycling, 178, pp. 106021. DOI:10.1016/j.resconrec.2021.106021
[43]. Zehua, J., Liya, S. & Yuansheng, P. (2020). Synthesis and toxic metals (Cd, Pb, and Zn) immobilization properties of drinking water treatment residuals and metakaolin-based geopolymers, Materials Chemistry and Physics, 242, pp. 1-9. DOI:10.1016/j.matchemphys.2019.122535
Go to article

Authors and Affiliations

Elżbieta Sitarz-Palczak
1
ORCID: ORCID

  1. Rzeszow University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The problem of of the use of fly ash still constitutes a research and exploration area for scientists. This is due to the fact that, 6,000,000 Mg of coal combustion by-products (CCB) are storage on landfills yearly in Poland alone. One of the potential directions of using fly ash is to use it as a substrate in hydrothermal syntheses of mesoporous materials (synthetic zeolites). Zeolites are aluminosilicates with a spatial structure. Due to their specific structure they are characterized by a number of specific properties among others molecular-sieve, ion-exchange and catalytic that can be used in engineering and environmental protection. So far, the synthesis has been carried out using coal combustion by-products such as fly ash or microsphere. The article analyzes whether separation from the fly ash of the appropriate fraction (below 63 μm) will affect the formation of zeolite grains. The syntheses were carried out using class F fly ash and the fraction separated from it, which was obtained by sieving the ash through a 63 μm sieve. Chemical (XRF) and mineralogical (XRD, SEM-EDS) analyzes were carried out for substrates as well as the obtained reaction products. In the case of substrates, the analysis did not show any significant differences between the ash and the separated fraction. However, in products after synthesis (Na-X zeolite with a small amount of Na-P1 zeolite, and small amounts of quartz and unreacted aluminosilicate glass - mullite) higher aluminum and sodium contents were observed from the separated fraction, with a lower calcium and potassium content. A small proportion of illite was observed on the diffraction curve of the zeolite from the fraction. Observations of grain morphology showed no differences in formation. Based on the conducted analyzes, it can be stated that, considering the economics of the synthesis process, the separation of fine fractions from the fly ash does not affect the quality of the synthesis process.

Go to article

Authors and Affiliations

Dorota Czarna-Juszkiewicz
Piotr Kunecki
Rafał Panek
Magdalena Wdowin
Download PDF Download RIS Download Bibtex

Abstract

The reduction of mercury emissions in currently existing coal-based power plant solutions by each method i.e. preliminary, primary and secondary (consisting of introducing coal into the combustion chamber and then removing mercury from the combustion gases arising from the combustion process) does not solve the problem of achieving the required limits by power plants. Therefore, the need has arisen to look for new, effective solutions.

The results presented in the work concern the analysis of environmental benefits for the use of zeolites obtained from by-products of coal combustion such as fly ash (from hard coal and lignite) in technologies for removing gaseous forms of mercury. The tested zeolites were silver-modified X-type structures. The reference material in the considerations was active carbon impregnated with bromine – a commercially available sorbent on the market.

The article considers environmental benefits resulting from the use of tested zeolites taking the product life cycle, sorbent efficiency and the possibility of its regeneration compared to activated carbon (AC/Br) into account. The LCA analysis was performed taking the estimated material and energy balances of the manufacturing processes into account. When comparing the production process of type X zeolite materials on the processing line and activated carbons in the amount necessary to capture 375 g Hg from exhaust gases, the LCA analysis showed that zeolites contribute to a lower potential impact on the environment. The advantage is that 5 times less zeolite sorbent than activated carbons is needed to capture the same amount of mercury. In addition, zeolite materials can be regenerated, which extends their life time

Go to article

Authors and Affiliations

Łukasz Lelek
Magdalena Wdowin
ORCID: ORCID
Rafał Panek
Download PDF Download RIS Download Bibtex

Abstract

Fly ash which has been separated from the flue gas stream as a result of fossil fuels combustion constitutes a huge amount of waste generated worldwide. Due to environmental problems, many directions of their rational use have been developed. Various attempts to convert fly ash into sorption materials, mainly synthetic zeolites, are conducted successfully. In this paper, an attempt was made to convert fly ash from lignite combustion from one of the Polish power plants, using alkaline hydrothermal synthesis. The primary phases in the fly ash were: quartz, gehlenite, mullite, hematite, feldspar, lime, anhydrite, occasionally grains of ZnO phase and pyrrhotite, glass and unburned fuel grains. As a result of hydrothermal synthesis a material containing new phases – pitiglianoite and tobermorite was obtained. Among the primary ash constituents, only gehlenite with an unburned organic substance, on which tobermorite with crystallized pitiglianoite was present. As a result of detailed testing of products after synthesis, it was found that among the tested grains:

• two populations can be distinguished – grains containing MgO and Fe2O3 as well as grains

containing Fe2O3 or MgO or containing none of these components,

• the main quantitative component was pitiglianoite,

• pitiglianoite was present in larger amounts in grains containing Fe2O3 or MgO or in the absence of both components than in grains in which Fe2O3 and MgO were found.

The results of the study indicate that in post-synthesis products, the contribution of components were as follows: pitiglianoite – 39.5% mas., tobermorite – 54% mas., gehlenite – 3% mas. and organic substance – 3.5% mas.

Go to article

Authors and Affiliations

Barbara Białecka
ORCID: ORCID
Zdzisław Adamczyk
ORCID: ORCID
Magdalena Cempa
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Flexible and rigid road pavement deteriorates over time and needs high-performance patching repair materials. Cold mix asphalt patching is an easy and inexpensive repair material to repair potholes and other damaged roads. However, the repaired road pavement fails because it doesn’t have adequate compressive and bonding strength to the substrate. Thus, this research uses high-performance geopolymer repair materials to patch against road pavement potholes substrate. Geopolymer repair materials could improve the bonding strength, making them suitable for road repair purposes. For making geopolymer repair materials, the main materials used were high calcium aluminosilicate source materials such as fly ash, sodium hydroxide, sodium silicate, and water. This study tested the compressive and bonding strength of geopolymer repair materials after 1, 7, 14, and 28 days. This study found that the compressive strength of 90 g of alkali activator was the highest, at 37.0 MPa. The bonding strength improved gradually from day 1 to day 14, and then considerably on day 28. The compressive strength and bonding strength both increase in direct proportion to the amount of alkali activator present. Alkali activator is optimal at 90 grams for compressive strength and bonding strength of geopolymer repair materials.
Go to article

Authors and Affiliations

W.W.A. Zailani
1
ORCID: ORCID
N.M. Apandi
1
ORCID: ORCID
M.M.A. Abdullah
2
ORCID: ORCID
M.F.M. Tahir
2
ORCID: ORCID
I Nengah Sinarta
3
Komang Ayu Ni Agustini
3
ORCID: ORCID
S. Abdullah
1
ORCID: ORCID

  1. Universiti Teknologi MARA, College of Engineering, School of Civil Engineering, 40450 Shah Alam, Selangor, Malaysia
  2. Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), 01000 Kangar, Perlis, Malaysia
  3. Warmadewa University, Faculty of Engineering and Planning, Den Pasa r, 80239, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Increasing environmental pressure against waste disposal, particularly fine waste surface storage and concern about mining damages have resulted in an increase in the popularity of a fly ash, tailing and binding agent mixture used as compaction grout of roof fall rocks in a gob area of longwalls. Backfilling of voids forming as a result of exploitation with the fall of roof with mixtures containing fine-grained industrial wastes is a common practice in coal mines. It is aimed at achieving numerous technological and ecological advantages as well as at controlling mining hazards. Research on hydraulic transport of fine-grained slurry conducted to date focused mainly on issues related to the analysis of the conditions related to pipeline transportation. The processes concerning the propagation of mixtures within the gob, on the other hand, remain largely unknown. The process of flow of fine-grained slurry through the caving is subject to a series of factors related, among other things, with the properties of the applied wastes and mixtures, the characteristics of the gob as well as the variability of these properties during the flow through the gob and in time. Due to the lack of sufficient knowledge pertaining to the changes taking place in the gob and in the slurry while it penetrates the gobs, no methods allowing for the design and optimization of the gob grouting process have been established so far. The paper presents the selected results of laboratory tests regarding the flow of ash and water mixtures in a model of a gob, pertaining to two selected types of fly ash produced in hard coal combustion, particularly concerning the impact of the type of the ash and the density of the slurry on the effectiveness of the gob grouting process.

Go to article

Authors and Affiliations

Marcin Krzysztof Popczyk
Rafał Jendruś
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The cenospheres are formed during the mineral transformation stage in coal combustion. Their content in fly ashes from the combustion of different types of coals varies over a rather wide range from 0.01 to 35.6 wt.%. The cenospheres has three main elements, silicon, aluminium and iron, the oxides of which account for about 89% of the material. Mineralogical analysis using XRD shows that as-received cenospheres mainly contain mullite and quartz as main mineralogical phases. The size of cenospheres varies between 5 and 500 [...], as the most common dimension is 20-300 [...]. The cenospheres are characterized by a low bulk density (0.2-0.8 g/cm3) and can be easily separated by gravitational methods in the form of a concentrate in aqueous media or collected from a water surface of lagoons intended for storage of ash and slag waste. The unique properties of these hollow microspheres make them amenable for wide applications. For example the cenospheres can be used to produce various lightweight construction products, including lightweight cements and aggregates in lightweight concrete.

Go to article

Authors and Affiliations

Elżbieta Haustein
Bernard Quant
Download PDF Download RIS Download Bibtex

Abstract

The use of biomass in the energy industry is the consequence of ongoing efforts to replace Energy from fossil fuels with energy from renewable sources. However, due to the diversity of the biomass, its use as a solid fuel generates waste with diverse and unstable chemical composition. Waste from biomass combustion is a raw material with a very diverse composition, even in the case of using only one type of biomass. The content of individual elements in fly ash from the combustion of biomass ranges from zero to tens of percent. This makes it difficult to determine the optimal recovery methods. The ashes from the combustion of biomass are most commonly used in the production of building materials and agriculture. This article presents the elemental composition of the most commonly used biomass fuels. The results of the analysis of elemental composition of fly ashes from the combustion of forest and agricultural biomass in fluidized bed boilers used in the commercial power industry were presented. These ashes are characterized by a high content of calcium (12.3–19.4%), silicon (1.2–8.3%), potassium (0.05–1.46%), chlorine (1.1–6.1%), and iron (0.8–6.5%). The discussed ashes contained no sodium. Aluminum was found only in one of the five ashes. Manganese, chromium, copper, nickel, lead, zinc, sulfur, bismuth, titanium and zirconium were found in all of the examined ashes. The analysis of elemental composition may allow for a preliminary assessment of the recovery potential of a given ash.

Go to article

Authors and Affiliations

Alicja Uliasz-Bocheńczyk
ORCID: ORCID
Eugeniusz Mokrzycki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Deposits used as fertilizer bring to soil both biogens necessary for plant growth and other ingredients such as metals. including heavy metals. Knowledge of quantities and rate in which heavy metals are to be released to soil from granulates is important because of their toxic influence on plants (in the case of high metals concentration). This paper presents results of investigation of elution of Cu. Zn, Ni, Cd, Pb. and Cr from granulates prepared from municipal sewage sludge, hard coal ash and brown coal ash. Elution to water solution was carried out in static conditions with single-stage and tree-stage extraction. Heavy metal a component of sludge-ash granulates eluted in various quantities, i.e. from trace for cadmium to 9.26-9.53 mg/kg of d.m. for zinc. Among the soluble forms of metals the most mobile are (in decreasing sequence): Cu > Pb> Zn> Ni in granulates containing brown coal ash and Cu> Pb> Ni> Zn in granulates contain hard coal ash.
Go to article

Authors and Affiliations

Czesława Rosik-Dulewska
ORCID: ORCID
Katarzyna Głowala
Urszula Karwaczyńska
Jolanta Robak
Download PDF Download RIS Download Bibtex

Abstract

For ages, concrete has been used to construct underwater structures. Concrete laying underwater is a very complex procedure important to the success or failure of underwater projects. This paper elucidates the influence of alkali activator ratios on geopolymers for underwater concreting; focusing on the geopolymer concrete synthesized from fly ash and kaolin activated using sodium hydroxide and sodium silicate solutions. The geopolymer mixtures were designed to incorporate multiple alkali activator ratios to evaluate their effects on the resulting geopolymers’ properties. The fresh concrete was molded into 50 mm cubes in seawater using the tremie method and tested for its engineering properties at 7 and 28 days (curing). The control geopolymer and underwater geopolymers’ mechanical properties, such as compressive strength, water absorption density, and setting time were also determined. The differences between the control geopolymer and underwater geopolymer were determined using phase analysis and functional group analysis. The results show that the geopolymer samples were optimally strengthened at a 2.5 alkali activator ratio, and the mechanical properties of the control geopolymer exceeded that of the underwater geopolymer. However, the underwater geopolymer was determined to be suitable for use as underwater concreting material as it retains 70% strength of the control geopolymer.
Go to article

Authors and Affiliations

Fakhryna Hannanee Ahmad Zaidi
1
ORCID: ORCID
Romisuhani Ahmad
1 2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
3 2
ORCID: ORCID
Wan Mastura Wan Ibrahim
1 2
ORCID: ORCID
Ikmal Hakem Aziz
3 2
ORCID: ORCID
Subaer Junaidi
4
ORCID: ORCID
Salmabanu Luhar
5 2
ORCID: ORCID

  1. Universiti Malaysia Perlis, Faculty of Engineering Technology, Sungai Chuchuh, 02100 Padang Besar, Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Geopolymer & Green Technology, Centre of Excellence (CEGeoGTech), Perlis, Malaysia
  3. Universiti Malaysia Perlis, Faculty of Chemical Engineering Technology, Taman Muhibbah, 02600 Jejawi, Arau, Perlis, Malaysia
  4. Universitas Negeri Makassar, Geopolymer & Green Material Group, Physics Department, FMIPA, Indonesia
  5. Frederick Research Center, P.O Box 24729, 1303 Nicosia, Cyprus
Download PDF Download RIS Download Bibtex

Abstract

The density, compressive strength, and thermal insulation properties of fly ash geopolymer paste are reported. Novel insulation material of glass bubble was used as a replacement of fly ash binder to significantly enhance the mechanical and thermal properties compared to the geopolymer paste. The results showed that the density and compressive strength of 50% glass bubble was 1.45 g/cm3 and 42.5 MPa, respectively, meeting the standard requirement for structural concrete. Meanwhile, the compatibility of 50% glass bubbles tested showed that the thermal conductivity (0.898 W/mK), specific heat (2.141 MJ/m3K), and thermal diffusivity (0.572 mm2/s) in meeting the same requirement. The improvement of thermal insulation properties revealed the potential use of glass bubbles as an insulation material in construction material.
Go to article

Authors and Affiliations

Noor Fifinatasha Shahedan
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 2
ORCID: ORCID
Norsuria Mahmed
1 2
ORCID: ORCID
Liew Yun Ming
1 2
ORCID: ORCID
Shayfull Zamree Abd Rahim
1
ORCID: ORCID
Ikmal Hakem A Aziz
1
ORCID: ORCID
Aeslina Abdul Kadir
3
ORCID: ORCID
Andrei Victor Sandu
4
ORCID: ORCID
Mohd Fathullah Ghazali
1
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolyme & Green Technology (CEGeoGTech), Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis, Malaysia
  3. Universiti Tun Hussein Onn Malaysia, Faculty of Civil and Environmental Engineering, Johor, Malaysia
  4. Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, Iasi, Romania
Download PDF Download RIS Download Bibtex

Abstract

This paper reports on the flexural properties of thin fly ash geopolymers exposed to elevated temperature. The thin fly ash geopolymers (dimension = 160 mm × 40 mm × 10 mm) were synthesised using12M NaOH solution mixed with designed solids-to-liquids ratio of 1:2.5 and Na2SiO3/NaOH ratio of 1:4 and underwent heat treatment at different elevated temperature (300°C, 600°C, 900°C and 1150°C) after 28 days of curing. Flexural strength test was accessed to compare the flexural properties while X-Ray Diffraction (XRD) analysis was performed to determine the phase transformation of thin geopolymers at elevated temperature. Results showed that application of heat treatment boosted the flexural properties of thin fly ash geopolymers as the flexural strength increased from 6.5 MPa (room temperature) to 16.2 MPa (1150°C). XRD results showed that the presence of crystalline phases of albite and nepheline contributed to the increment in flexural strength.
Go to article

Authors and Affiliations

Yong-Sing Ng
1 2
Yun-Ming Liew
1 2
ORCID: ORCID
Cheng-Yong Heah
1 3
Mohd Mustafa Al Bakri Abdullah
1 2
ORCID: ORCID
Hui-Teng Ng
1 2
Lynette Wei Ling Chan
4

  1. Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer and Green Technology (CeGeoGTech), Kangar, 01000 Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Kangar, 01000 Perlis, Malaysia
  3. Universiti Malaysia Faculty of Mechanical Engineering Technology, Perlis (UniMAP), Kangar, 01000 Perlis, Malaysia
  4. Ceramic Research Company Sdn Bhd (Guocera-Hong Leong Group), Lot 7110, 5½ Miles, Jalan Kapar, 42100 Klang, Selangor, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of hydrothermal zeolitization of fly ash from hard coal combustion in one of the Polish power plants. The synthesis was carried out using various NaOH fly ash mass ratio (3.0, 4.0 and 6.0) and the effect of NaOH concentration in the activating solution on composition of synthesized sample was tested. The process was carried out under the following permanent conditions temperature: 90°C, time – 16 hours, water solution of NaOH (L)/fly ash (g) ratio – 0.025. In the studied fly ash the dominant chemical components were SiO2 and Al2O3, while the main phase components were mullite, quartz and hematite, and a significant share of amorphous substance (glass and unburnt organic substance). After hydrothermal synthesis, the presence of unreacted fly ash phases was found in the products, as well as new phases, the quality and quantity of which depend on the NaOH to fly ash mass ratio used for synthesis:

 for ratio 3.0 – Na-LSX type zeolite and hielscherite,

 for ratio 4.0 – Na-LSX type zeolite, hielscherite and hydrosodalite,

 for ratio 6.0 – hydrosodalite and hielscherite.

The grains in all products of synthesis are poly-mineral. However, it was found that the new phases, overgrowing the unreacted phase components of fly ash, crystallize in a certain order. Hielscherite is the first crystallizing phase, on which the Na-LSX type zeolite crystallizes then, and the whole is covered by hydrosodalite. In the products of synthesis, the share of sodium-containing phases (the Na-LSX type zeolite and hydrosodalite) increases with the increasing concentration of NaOH in the solution used for the process.

Go to article

Authors and Affiliations

Zdzisław Adamczyk
ORCID: ORCID
Magdalena Cempa
ORCID: ORCID
Barbara Białecka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Interface shear strength between geomembranes with various textures, which are used for carrying out the artificial sealing of waste disposal, and compacted fly ash/bottom ash mix, was determined in the paper. The tests were conducted in a classical direct shear apparatus, with the use of a modified cylindrical box. The box was equipped with an additional part, which enabled interaction testing between compacted waste and HOPE geomembrane, It was found that interface strength estimation docs not depend on sample compaction. Only geomcmbranc structure has an effect on shear strength between waste sample and geomembrane. In the case of geomembranes with diverse structure greater values of interface friction angle are obtained, and for smooth geomembranc - greater values of adhesion.
Go to article

Authors and Affiliations

Katarzyna Zabielska-Adamska
Download PDF Download RIS Download Bibtex

Abstract

The exploitation and processing of lignite in the Bełchatów region is connected with the formation of various mineral waste materials: varied in origin, mineral and chemical composition and raw material properties of the accompanying minerals, ashes and slags from lignite combustion and reagipsum from wet flue gas desulphurisation installations. This paper presents the results of laboratory tests whose main purpose was to obtain data referring to the potential use of fly ashes generated in the Bełchatów Power Plant and selected accompanying minerals exploited in the Bełchatów Mine in the form of self-solidification mixtures. The beidellite clays were considered as the most predisposed for use from the accompanying minerals , due to pozzolanic and sorption properties and swelling capacity. Despite the expected beneficial effects of clay minerals from the smectite group on the self-settling process as well as the stability of such blends after solidification, the results of physical-mechanical tests (compressive strength and water repellence) were unsatisfactory. It was necessary to use Ca (OH)2, obtained from the lacustrine chalk as an activator of the self-settling process It was necessary to use lacustrine chalk as an activator of the self-solidification process. The presence of calcium will allow the formation of cement phases which will be able to strongly bond the skeletal grains. Also, the addition of reagipsum to the composition of the mixture would contribute to the improvement of the physico-mechanical parameters. The elevated SO4 2– ion in the mixture during the solidification allows for the crystallization of the sulphate phases in the pore space to form bridges between the ash and clay minerals. The use of mixtures in land reclamation unfavourably transformed by opencast mining in the Bełchatów region would result in measurable ecological and economic benefits and would largely solve the problem of waste disposal from the from the operation and processing of lignite energy.

Go to article

Authors and Affiliations

Elżbieta Hycnar
Marek Waldemar Jończyk
Tadeusz Ratajczak
Download PDF Download RIS Download Bibtex

Abstract

The issue of mercury emission and the need to take action in this direction was noticed in 2013 via the Minamata Convention. Therefore, more and more often, work and new law regulations are commencing to reduce this chemical compound from the environment. The paper presents the problem of removing mercury from waste gases due to new BREF/BAT restrictions, in which the problem of the need to look for new, more efficient solutions to remove this pollution was also indicated. Attention is paid to the problem of the occurrence of mercury in the exhaust gases in the elemental form and the need to carry out laboratory tests. A prototype installation for the sorption of elemental mercury in a pure gas stream on solid sorbents is presented. The installation was built as part of the LIDER project, financed by the National Center for Research and Development in a project entitled: “The Application of Waste Materials From the Energy Sector to Capture Mercury Gaseous Forms from Flue Gas”. The installation is used for tests in laboratory conditions in which the carrier gas of elemental mercury is argon. The first tests on the zeolite sorbent were made on the described apparatus. The tested material was synthetic zeolite X obtained as a result of a two-stage reaction of synthesis of fly ash type C with sodium hydroxide. Due to an increase, the chemical affinity of the tested material in relation to mercury, the obtained zeolite material was activated with silver ions (Ag+) by an ion exchange using silver nitrate (AgNO3). The first test was specified for a period of time of about 240 minutes. During this time, the breakthrough of the tested zeolite material was not recorded, and therefore it can be concluded that the tested material may be promising in the development of new solutions for capturing mercury in the energy sector. The results presented in this paper may be of interest to the energy sector due to the solution of several environmental aspects. The first of them is mercury sorption tests for the development of new exhaust gases treatment technologies. On the other hand, the second aspect raises the possibility of presenting a new direction for the management and utilization of combustion by-products such as fly ash.

Go to article

Authors and Affiliations

Piotr Kunecki
Dorota Czarna-Juszkiewicz
Rafał Panek
Magdalena Wdowin
Download PDF Download RIS Download Bibtex

Abstract

The main energy source in Poland is still hard coal and lignite. The coal combustion process produces large quantities of by-products, e.g. fly ashes, slag furnace and harmful chemical gases (CO2, NOx, sulfur compounds) which enter the atmosphere. Fly ashes, due to their being fine grained (cement-like), chemical and phase compound and reactivity, have also been widely used in various technological solutions e.g. in the production of ordinary cement, hydro-technical cement and the new generation of cements. The adequate amount of fly ashes additive has a positive effect on fresh and hardened cement slurry properties. What is more, it allows for the pro-ecological and economic production of cement mix The exploitation of natural resources is connected with performance mining excavations at different depths. After a certain period of time, those voids break down which, in turn, leads to the slip of upper layers and the so-called landslides forming on the surface. This situation imposes the necessity of basis and sealing rock mass reinforcement. To minimize the risk connected to geotechnical problems on the mining areas, there is a need to use engineering solutions which could improve soil bearing in a universal, economical and efficient way. This leads to the development of new cement slurry recipes used during geoengineering works, especially in the mining areas. Moreover, economic requirements are forcing engineers to use less expensive technical and technological solutions simultaneously maintaining strength properties. An example of such a solution is to use suitable additives to cement slurry which could reduce the total unit cost of the treatment.

Go to article

Authors and Affiliations

Małgorzata Formela
Stanisław Stryczek
Download PDF Download RIS Download Bibtex

Abstract

Mine drainage and discharge of salt waters into water bodies belong to main environmental issues, which must be appropriately addressed by the underground coal mining industry. The large area of exploited and abandoned mine fields in the Upper Silesia Coal Basin, as well as the geological structure of the rock mass and its hydrogeological conditions require the draining and discharge of about 119 million m3/yr of mine waters. Increasing the depth of mining and the necessity of protection of mines against water hazard result in increased amounts of chlorides and sulphates in the mine waters, even by decreasing the total coal output and the number of mines. The majority of the salts are being discharged directly into rivers, partly under control of salt concentration, however from the point of the view of environment protection, the most favorable way of their utilization would be technologies allowing the bulk use of saline waters. Filling of underground voids represents a group of such methods, from which the filling of goaves (cavings) is the most effective. Due to large volume of voids resulting from the extraction of coal and taking the numerous limitations of this method into account, the potential capacity for filling reaches about 17.7 million m3/yr of cavings and unnecessary workings. Considering the limited availability of fly ash, which is the main component of slurries being in use for the filling of voids, the total volume of saline water and brines, which could be utilized, has been assessed as 3,5–6,5 million m3/yr

Go to article

Authors and Affiliations

Grzegorz Strozik
Download PDF Download RIS Download Bibtex

Abstract

The application of fluidized fly ash in underground mining excavations is limited due to its significant content of free calcium and calcium sulfate. In order to increase the amount of utilized fly ash from fluidized beds, it should be converted to a product with properties that meet the requirements for mining applications. This research presents the results of an attempt to adapt fluidized fly ashes for use in underground mining techniques, by means of carbonation and granulation. Carbonation was performed with the use of technical carbon dioxide and resulted in the reduction of free calcium content to a value below 1%. Granulation on the other hand, resulted in obtaining a product with good physical and mechanical parameters. The performed mineralogical and chemical studies indicate that trace amounts of “binding” phases, such as basanite and/or gypsum are present in the carbonized ash. The addition of water, during the granulation of carbonized fluidized fly ash, resulted in changes in the mineral phases leading to the formation of ettringite and gypsum as well as the recrystallization of the amorphous substance. It was confirmed that the carbonization and granulation of flying fluidized ashes positively affects the possibility of using these ashes in underground mining excavations.

Go to article

Authors and Affiliations

Jadwiga Proksa
Marian Jacek Łączny
Zbigniew Bzowski
Download PDF Download RIS Download Bibtex

Abstract

The purpose of the study was determining of degree of contamination of soil cover as a result of disposing of different industrial wastes and comparison of the soil quality with quality of soils and the grounds described in standards in relation to the reclamation works carried out on the dump. Analysed waste dump belongs to the sparse objects of this type in the Upper Silesian Coal Basin, where both coal mining wastes as well as flying ashes occur.
During investigations there was done a collection of 9 soil samples around the dump using Egner`s cane from the depth of 30 cm. The content of heavy metals was determined (Cd, Co, Cr, Cu, Ni, Pb, Zn) using method of emission spectrometry (ICP-AES) and phase composition studies using the X-ray diffraction method (XRD ).
Obtained results enabled determination of impact of disposed wastes on the degradation of pedosphere of studied area, which represents III group of fallow lands. The contents of heavy metals in soil samples vary in wide spectrum, but do not exceed permissible content of metals and metalloids for the aforementioned soil group. The highest concentrations reaches iron (average content 0,6%), while concentrations of other elements do not exceed 0.02%. In the mineral composition of soil samples the dominant components are typical for soils in the area of post-mining dumps, i.e. quartz, feldspars, clay minerals, represented by kaolinite and illite. The presence of muscovite with a share of < 5% was also found. Minerals from the carbonate group – calcite (< 3.5%) and dolomite (< 0.3%) occur rarely. In the investigated samples there was identified presence of mullite, component typical for wastes coming from energy sector.
Go to article

Authors and Affiliations

Marek Marcisz
1
ORCID: ORCID
Zdzisław Adamczyk
1
ORCID: ORCID
Łukasz Gawor
1
ORCID: ORCID
Katarzyna Nowińska
1
ORCID: ORCID

  1. Silesian University of Technology, Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

Fly-ash is a form of production waste produced as a result of the burning of coal for energy production. Millions of tonnes of this waste are produced worldwide every year; hence it is extremely important to dispose of it in a useful way, including through treating the initial raw material to obtain a material of higher quality. The aim of the present work is to determine the suitability of processed fly-ash from lignite for reinforcing (stabilizing) soils used in the building of road foundations and embankments. The results provide a method of recycling this waste while at the same time obtaining new materials and technologies for use in road building. This is an important issue both environmentally and in terms of the positive effect that processed fly-ash can have on the stability of road structures.

This article presents the results of experiments carried out using fly-ash produced from lignite at the P¹tnów Power Plant. This ash was first modified (activated) using a Wapeco magnetic activator, and then used to produce hydraulic binders (with the addition of cement) and soil-binder mixtures. These mixtures were made using natural soils from seven different deposits in the Lubuskie region (western Poland). They were stabilized using two hydraulic binders (strength ratings 3 MPa and 9 MPa) added in different amounts (6% and 8% relative to the mass of the soil). During the experiment, a determination was made of the increase in the strength of the analysed samples (after 14, 28, and 42 days) and the increase in the bearing ratio (immediately after consolidation and after 7 days).

Interpretation of the results of the experiment made it possible to assess the dynamics of the increase in compression strength and load-bearing capacity of various soils stabilized with hydraulic binders produced from lignite ash, and to indicate possibilities for the use of these materials.

The analysis showed that it is possible to use these binders for the stabilisation of soils, enabling soils formerly considered to have weak load-bearing capacity (clayey sand; clayey, sandy gravel; clays) to be classified as fully usable in road construction.

Go to article

Authors and Affiliations

Urszula Kołodziejczyk
Michał Ćwiąkała
Aleksander Widuch
Download PDF Download RIS Download Bibtex

Abstract

In the present paper changes of polycyclic aromatic hydrocarbons (PAHs) content were evaluated during composting of sewage sludge stabilized with coal fly ash. The content of PAHs in sewage sludge used for composting was I 0385 μg/kg (±830). In fly ash only three PAHs were determined (phenanthrene - 0.9 μg/kg, anthraccnc - 1.9 μg/kg and chrysenc - 2.7 μg/kg). Addition of fly ash to composted sewagesludge had various - dependent on its share - effect on PAHs mineralization. Relatively best degradation (66.3%) was noted when sewage sludge was mixed with fly ash in amount 20% (w/w). In composted sewage sludge and sludge with 30% addition of fly ash a decrease of PAH content was also observed (38 and 32.4% respectively). Relatively "best" mineralization was noted for 3-ring PAHs. Estimated half-lives of all investigated compounds depended on individual PAHs properties and ranged from 59 to 1164 days.
Go to article

Authors and Affiliations

Patryk Oleszczuk
Stanisław Baran
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to determine the influence of reclamation on selected soil water properties in soils developed from lignite fly ash, deposited as a dry landfill, twenty years after forest reclamation was initiated. Five soil profiles, classified as technogenic soils (Technosols) within the fly ash disposal site of the Adamów (central Poland) power plant, were selected for this study. Disturbed and undisturbed samples (V=100 cm3) were collected from depths of 5–15 cm and 30–60 in each soil profile. The following physical properties were determined: particle size distribution, particle density, bulk density, soil moisture, hygroscopic water content, and the soil-water potential. Readily available water (RAW; difference of water content at pF=2.0 and at pF=3.7) and total available water (TAW; difference of water content at pF=2.0 and at pF=4.2) were calculated based on soil moisture tension (pF) values. The following chemical properties were determined: soil reaction, total organic carbon, total nitrogen content, carbonate content. Statistical analyses were conducted using the GenStat 18 statistical software package. The soils under study were characterized by very low bulk density, high total porosity, high field water capacity and maximum hygroscopicity. The RAW/TAW ratio values indicate very effective water retention in the soils, thereby ensuring a satisfactory water supply to the plants. However, statistical analysis did not show any clear trends in variability of any determined properties. The small differences in observed outcomes probably resulted from the original variability of the fly ash deposited on the studied landfill. Obtained results show the strong similarity of fly ash derived soils and Andosols in respect of physical and soil-water properties
Go to article

Bibliography

  1. Ahmaruzzaman, M. (2010). A review on the utilization of fly ash, Prog Energ Combust, 36, 3, pp. 327-363, DOI: 10.1016/j.pecs.2009.11.003
  2. Antonkiewicz, J. (2010). Physicochemical properties of industrial waste from landfill, Rocz Glebozn - Soil Sci Ann, 61, 3, pp. 3-12. (in Polish)
  3. Bender, J. (1995). Reclamation of post-mining areas in Poland, Zesz Probl Post Nauk Roln, 418, 1, pp. 75-86. (in Polish)
  4. Bielińska, E.J. & Futa, B. (2009). Organic matter effect on biochemical transformations in anthropogenic soils in power plant ash dumping ground, Rocz Glebozn - Soil Sci Ann, 60, pp. 318-326. (in Polish)
  5. Campbell, D.J., Fox, W.E., Aitken, R.L, & Bell, L.C. (1983). Physical characteristic of sands amended with fly ash, Aust J Soil Res, 21, 2, pp.147-154, DOI:10.1071/SR9830147
  6. Dorel, L., Roger-Estrade, J., Manichon, H. & Delvaux, B. (2000). Porosity and soil water properties of Carribean volcanic ash soils, Soil Use Manage, 16, pp. 133-140, DOI: 10.1111/j.1475-2743.2000.tb00188.x
  7. Gajewski, P., Kaczmarek, Z., Owczarzak, W., Mocek, A. & Glina, B. (2015). Selected water and physical properties of soils located in the vicinity of proposed opencast lignite mine ”Drzewce” (middle Poland), Soil Sci Ann, 66, 2, pp. 75-81, DOI: 10.1515/ssa-2015-0022
  8. Gangloff, W. J., Ghodrati, M., Sims, J.T. & Vasilis, B.L. (2000). Impact of fly ash amendment and incorporation method on hydraulic properties of a sandy soil, Water Air Soil Polut, 19, pp. 231-245, DOI: 10.1023/A:1005150807037
  9. Gilewska, M. (2004). Biological reclamation of power plant lignite ash dump sites, Rocz Glebozn - Soil Sci Ann, 55, 2, pp. 103-110. (in Polish)
  10. Gilewska, M. (2006). Utilization of wastes in reclamation of post mining soils and ash dump sites, Rocz Glebozn - Soil Sci Ann, 57, 1/2, pp. 75-81. (in Polish)
  11. Gilewska, M. & Otremba, K. (2010). Impact of planting technique on reclamation of disposal site of power station incineration ash, Zesz Nauk Uniw Ziel, Inż Środ, 17, 137, pp. 86-93. (in Polish)
  12. Gilewska, M., Otremba, K. & Kozłowski, M. (2020). Physical and chemical properties of ash from thermal power station combusting lignite. A case study from central Poland, J Elem, 25, 1, 279-295. DOI: 10.5601/jelem.2019.24.4.1886
  13. Gupta, A.K., Dwivedi, S., Sinhi, S., Tripathi, R.D., Rai, U.N. & Singh, S.N. (2007). Metal accumulation and plant growth performance of Phaseolus vulgaris grown in fly ash amended soil. Bioresource Technol, 98, pp. 3404–3407. DOI:10.1016/j.biortech.2006.08.016
  14. Hartman, P., Fleige, H. & Horn, R. (2010). Water repellency of fly ash-enriched forest soils from eastern Germany, Eur J Soil Sci, 61, pp. 1070-1078, DOI: 10.1111/j.1365-2389.2010.01296x
  15. Haynes, R.J. (2009). Reclamation and revegetation of fly ash disposal sites – challenges and research, J Environ Manag, 90, pp. 43-53, DOI:10.1016/j.jenvman.2008.07.003
  16. IUSS Working Group WRB (2015) World Reference Base for Soil Resources 2014, update 2015: International soil classification system for naming soils and creating legends for soil maps, FAO, Rome 2015.
  17. Jahn, R., Blume, H.P., Asio, V.B., Spaargaren, O. & Schad, P. (2006). Guidelines for Soil Description, FAO, Rome 2006.
  18. Jala, S. & Goyal, D. (2006). Fly ash as a soil ameliorant for improving crop production: a review, Biores Technol, 97, pp. 1136-1147, DOI:10.1016/j.biortech.2004.09.004
  19. Kabała, C., Charzyński, P., Chodorowski, J., Drewnik, M., Glina, B., Greinert, A., Hulisz, P., Jankowski, M., Jonczak, J., Łabaz, B., Łachacz, A., Marzec, M., Mendyk, Ł., Musiał, P., Musielok, Ł., Smreczak, B., Sowiński, P., Świtoniak, M., Uzarowicz, Ł. & Waroszewski, J. (2019). Polish Soil Classification, 6th edition – principles, classification scheme and correlations, Soil Sci Ann, 70, 2, pp. 71-97, DOI:10.2478/ssa-2019-0009
  20. Kaczmarek, Z. (2011). Selected physical and water properties of mineral arable soils situated within the range of the predicted draining cone of the “Tomisławice” lignite opencast mine, Rocz Glebozn - Soil Sci Ann, 62, 2, pp. 154-164. (in Polish)
  21. Kaczmarek, Z., Gajewski, P., Owczarzak W., Mocek, A. & Glina B. (2015). Physical and water properties of selected heavy soils of various origins, Soil Sci Ann, 66, 4, pp. 191-197, DOI: 10.1515/ssa-2015-0036
  22. Kaczmarek, Z., Gajewski, P., Owczarzak, W., Glina, B. & Woźniak T. (2017). Physical and water properties of selected soils located in the area of predicted depression cone of “Tomisławice” lignite opencast mine (middle Poland), Polish J Soil Sci, 50, 2, pp. 167-176, DOI: 10.17951/pjss.2017.50.2.167
  23. Kavouridis, K. (2008). Lignite industry in Greece within a world context: Mining, energy supply and environment, Energy Policy, 36, 4, pp. 1257-1272, DOI:10.1016/j.enpol.2007.11. 017
  24. Klose, S., Koch, J., Baucker, E. & Makeschin, E. (2001). Indicative properties of fly ash affected forest soil in Northeastern Germany, J Plant Nutr Soil Sci, 164, pp. 561-568, DOI: 10.1002/1522-2624(200110)164:5561::AID-JPLN561>3.0.CO;2-9
  25. Klute, A. (1986). Water retention: Laboratory methods, in: Klute, A. (Ed.). Methods of Soil Analysis Part 1 Physical and Mineralogical Methods, ASA and SSSA, Madison Wi, pp. 635-662.
  26. Konstantinov, A.O., Novoselov, A.A. & Loiko, S.V., 2018. Special features of soil development within overgrowing fly ash deposit sites of the solid fuel power plant, Vestnik Tomskogo Gosudarstvennogo Universiteta, Biologiya, 43, pp. 6–24. DOI: 10.17223/19988591/43/1
  27. Konstantinov, A., Novoselov, A., Konstantinova, E., Loiko, S., Kurasova, A. & Minkina, T. (2020). Composition and properties of soils developed within the ash disposal areas originated from peat combustion (Tyumen, Russia), Soil Sci. Ann., 71, 1, pp. 3–14, DOI: 10.37501/soil sa/121487
  28. Krzaklewski, W., Pietrzykowski, M. & Woś, B. (2012). Survival and growth of alders (Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench), Ecological Enginering, 49, pp. 35-40, DOI: 10.1016/j.ecoleng.2012.08.026
  29. Maciak, F., Liwski, S. & Biernacka, E. (1976). Agricultural reclamation of lignite and hard coal waste landfills (ash). Part III. The course of soil formation processes in ash dumps under the influence of grass and papilionaceous vegetation, Rocz Glebozn - Soil Sci Ann, 27, 4, pp. 189-209. (in Polish)
  30. Maiti, S.K. & Jaiswal, S. (2008). Bioaccumulation and translocation of metals in the natural vegetation growing on fly ash lagoons: a field study from Santaldih thermal power plant, West Bengal, India, Environmental Monitoring and Assessment, 136, pp. 355–370, DOI: 10.1007/s10661-007-9691-5
  31. Meravi, N. & Prajapati, S.K. (2019). Reclamation of fly ash dykes using naturally growing plant species, Proceedings of the International Academy of Ecology and Environmental Sciences, 9, 4, pp. 137-148.
  32. Mocek, A. (1989). Possibilities for rational management of chemically contaminated soils in industrial sanitary protection zones, Dissertation, Rocz AR Poznań, Rozpr Nauk, 185. (in Polish)
  33. Mocek-Płóciniak, A. (2018). The physicochemical and microbiochemical properties of soils developing in landfills with ash and slag from power plants, Dissertation, Wyd UPP, Rozpr Nauk, 499. (in Polish)
  34. Mohr, H. M. & Evans, G. M. (2009). Forecasting coal production until 2100, Fuel, 88, 11, pp. 2059-2067, DOI:10.1016/j.fuel.2009.01.032
  35. Neall, V.E. (2000). Volcanic soils, in: Verheye, W.H. (Ed.). Encyclopedia of land use, land cover and soil sciences, Soils and Soil Sciences (Part 2), 7, pp. 27-34, Eolss Publisher Co. Ltd./UNESCO, Oxford 2000.
  36. Pietrzykowski, M., Woś, B., Pająk, M., Wanic, T., Krzaklewski, W. & Chodak, M. (2018). Reclamation of a lignite combustion waste disposal site with alders (Alnus sp.): assessment of tree growth and nutrient status within 10 years of the experiment, Environ Sci and Pollut R, 25, pp. 17091–17099, DOI: 10.1007/s11356-018-1892-7
  37. Rosik-Dulewska, C. (2015). Basics of waste management, PWN, Warszawa 2015.
  38. Rosik-Dulewska, C., Krawczyńska, U. & Ciesielczuk, T. (2008). Leaching of PAHs from fly ash – sludge blends, Archives of Environmental Protection, 34, 3, pp. 41–47.
  39. Sokol, E.V., Maksimova, N.V., Volkova, N.I., Nigmatulina, E.N. & Frenkel, A.E. (2000). Hollow silicate microspheres from fly ashes of the Chelyabinsk brown coals (south Urals, Russia). Fuel Process. Technol., 67 (1), pp. 35–52. DOI: 10.1016/S0378-3820(00)00084-9
  40. Soil Conservation Service, (2004). Soil Survey laboratory methods manual, in: Soil Survey Invest Raport No 42, US Dept Agric Washington DC, pp. 105-195.
  41. Soil Survey Manual by Soil Survey Division Staff (2017). US Department of Agriculture, Handbook No. 18, Washington 2017.
  42. Stachowski, P., Oliskiewicz-Krzywicka, A. & Kozaczyk, P. (2013). Estimation of the Meteorological Conditions in the Area of Postmining Grounds of the Konin Region, Rocz Ochr Sr, 15, pp. 1834-1861.
  43. Strączyńska, S., Strączyński, S. & Gazdowicz, W. (2004). The influence of cover vegetation on morphological characteristics and some properties of embankment formation of furnace discards dump, Rocz Glebozn – Soil Sci Ann, 55, 2, pp. 397–404. (in Polish)
  44. Strzyszcz, Z. (2004). Assessment of the suitability and principles for the application of various wastes for the reclamation of waste dumps and areas degraded by industrial activities, Prace i Studia, Zabrze 2004.
  45. Systematyka Gleb Polski (2019). Polskie Towarzystwo Gleboznawcze, Komisja Genezy, Klasyfikacji i Kartografii Gleb. Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, Polskie Towarzystwo Gleboznawcze, Wrocław – Warszawa, pp. 235.
  46. Uehara, G. (2005). Volcanic soils, [In] Hillel, D. (Ed). Encyclopedia of Soils in the Environment, Elsevier, pp. 225-232, https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/volcanic-soils
  47. Ukwattage, L., Ranjith, P.G. & Bouazza, M. (2013). The use of coal combustion fly ash as a soil amendment in agricultural lands (with comments on its potential to improve food security and sequester carbon), Fuel, 109, pp. 400-408, DOI:10.1016/fuel.2013.02.016
  48. Uzarowicz, Ł. & Zagórski., Z. (2015). Mineralogy and chemical composition of technogenic soils (Technosols) developed from fly ash and bottom ash from selected thermal power stations in Poland, Soil Sci Ann, 66, 2, pp. 82-91, DOI: 10.1515/ssa-2015-0023
  49. Uzarowicz Ł., Zagórski Z., Mendak E., Bartmiński P., Szara E., Kondras M., Oktaba L., Turek A. & Rogoziński R. (2017). Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part I. Properties, classification, and indicators of early pedogenesis, Catena, 157C, pp. 75-89, DOI: 10.1016/j.catena.2017.05.010
  50. Uzarowicz, Ł., Skiba, M., Leue, M., Zagórski, Z., Gąsiński, A. & Trzciński, J. (2018a). Technogenic soils (Technosols) developed from fly ash and bottom ash from thermal power stations combusting bituminous coal and lignite. Part II. Mineral transformations and soil evolution, Catena, 162C, pp. 255-269, DOI: 10.1016/j.catena.2017.11.005
  51. Uzarowicz, Ł., Kwasowski, W., Śpiewak, O. & Świtoniak, M. (2018b). Indicators of pedogenesis of Technosol developed in an ash settling pond at the Bełchatów thermal power station (central Poland), Soil Sci Ann, 69, 1, pp. 49-59, DOI: 10.2478/ssa-2018-0006
  52. Vassilev, S.V. & Vassileva, C.G. (1996). Mineralogy of combustion wastes from coal-fired power stations, Fuel Process Technol, 47, 3, pp. 261-280, DOI: 10.1016/0378-3820(96)01016-8
  53. Weber, J., Strączyńska, S., Kocowicz, A., Gilewska, M., Bogacz, A., Gwiżdż, M. & Dębicka, M. (2015). Properties of soil materials derived from fly ash 11 years after revegetation of post-mining excavation, Catena, 13, pp: 250-254, DOI: 10.1016/j.catena.2015.05.016
  54. World Coal Association (2019). Coal use & environment, https://www.worldcoal.org/coal-electricity (30.08.2020).
  55. Yao, Z.T., Ji, X.S., Sarker, P.K., Tang, J., Ge, L.Q. & Xia, M.S. (2015). A comprehensive review on the applications of coal fly ash, Earth Sci Rev, 4, pp. 105-121, DOI: 10.1016/j.earscirev.2014.11.016
  56. Zikeli, S., Jahn, R. & Kastler, M. (2002). Initial soil development in lignite ash landfills and settling ponds in Saxony-Anhalt, Germany, J Plant Nutr Soil Sc, 165, pp. 530–536, DOI: 10.1002/1522-2624(200208)165:4530::AID-JPLN530>3.0.CO;2-J
  57. Zikeli, S., Kastler, M. & Jahn, R. (2004). Cation exchange properties of soils derived from lignite ashes, J Plant Nutr Soil Sc, 167, 4, pp. 439-448, DOI: 10.1002/jpln.200421361
  58. Żołnierz, L., Weber, J., Gilewska, M., Strączyńska, S. & Pruchniewicz, D. (2016). The spontaneous development of undestory vegetation on reclaimed and afforested post mine excavation field with fly ash, Catena, 136, pp. 84-90, DOI: 10.1016/j.catena.2015.07.013
Go to article

Authors and Affiliations

Zbigniew Kaczmarek
1
Agnieszka Mocek-Płóciniak
1
Piotr Gajewski
1
Łukasz Mendyk
1
Jan Bocianowski
1

  1. Poznań University of Life Sciences, Poznań, Poland

This page uses 'cookies'. Learn more