Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The explosive rise of wireless services necessitates a network connection with high bandwidth, high performance, low mistakes, and adequate channel capacity. Individual mobile users, as well as residential and business clusters are increasingly using the internet and multimedia services, resulting in massive increases in the internet traffic demand. Over the past decade, internet traffic has grown significantly faster than Moore’s law predicted. The current system is facing significant radio frequency spectrum congestion and is unable to successfully transmit growing amounts of (available) data to end users while keeping acceptable delay values in mind. Free space optics is a viable alternative to the current radio frequency technology. This technology has a few advantages, including fast data speeds, unrestricted bandwidth, and excellent security. Since free space optics is invisible to traffic type and data protocol, it may be quickly reliably and profitably integrated into an existing access network. Despite the undeniable benefits of free space optics technology under excellent channel conditions and its wide range of applications, its broad use is hampered by its low link dependability, especially over long distances, caused by atmospheric turbulence-induced decay and weather sensitivity. The best plausible solution is to establish a secondary channel link in the GHz frequency range that works in tandem with the primary free space optics link. A hybrid system that combines free space optics and millimeter wave technologies in this research is presented. The combined system offers a definitive backhaul maintenance, by drastically improving the link range and service availability.
Go to article

Bibliography

  1. Chowdhury, M. , Hasan, M. K., Shahjalal, M., Hossan, M. T. & Jang, Y. M. Optical wireless hybrid networks: trends, opportunities, challenges, and research directions. IEEE Commun. Surv. Tutor. 22, 930–966 (2020). https://doi.org10.1109/COMST.2020.2966855
  2. Liu, G. & Jiang, D. 5G : Vision and requirements for mobile communication system towards year 2020. Chinese J. Eng. 2016, 1–8 (2016). https://doi.org/10.1155/2016/5974586
  3. Ford, R. et al. Achieving ultra-low latency in 5G millimeter wave cellular networks. IEEE Commun. Mag. 55, 196–203 (2017). https://org/10.1109/MCOM.2017.1600407CM
  4. Tunc, C., Ozkoc, M. , Fund, F. & Panwar, S. S. The blind side: latency challenges in millimeter wave networks for connected vehicle applications. IEEE Trans. Veh. Technol. 70, 529–542 (2021). https://doi.org/10.1109/TVT.2020.3046501
  5. Mikolajczyk, J. et al. Optical wireless communications operated at long-wave infrared radiation. J. Electron. Telecommun. 66, 383–387 (2020). https://doi.org/10.24425/ijet.2020.131889
  6. Mikołajczyk, J. et al. Analysis of free-space optics development. Meas. Syst. 24, 653–674 (2017). https://doi.org/10.1515/mms-2017-0060
  7. Son, I. & Mao, S. A survey of free space optical networks ☆. Digit. Commun. Netw. 3, 67–77 (2017). https://doi.org/10.1016/j.dcan.2016.11.002
  8. Khalighi, M. & Uysal, M. Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutor. 16, 2231–2258 (2014). https://doi.org/10.1109/COMST.2014.2329501
  9. Rockwell, D. & Mecherle, G. S. Wavelength selection for optical wireless communications systems. Proc. SPIE 4530, 26–35 (2001). https://doi.org/10.1117/12.449812
  10. Bloom, S., Korevaar, E., Schuster, J. & Willebrand, H. Under-standing the performance of free-space optics. Opt. Netw. 2, 178–200 (2003). https://doi.org/10.1364/JON.2.000178
  11. Willebrand, H. & Ghuman, B. Free Space Optics : Enabling Optical Connectivity In Today’s Networks. (Indianapolis, Indiana: SAMS, 2002).
  12. Jeyaseelan, J., Sriram Kumar, D. & Caroline, B. Disaster management using free space optical communication system. Photonic Netw. Commun. 39, 1–14 (2020). https://doi.org/10.1007/s11107-019-00865-9
  13. Anandkumar, D. & Sangeetha, R. A survey on performance enhancement in free space optical communication system through channel models and modulation techniques. Opt. Quantum Electron. 53, 5 (2020). https://doi.org/10.1007/s11082-020-02629-6
  14. Siegel, T. & Chen, S.-P. Investigations of free space optical communications under real-world atmospheric conditions. Pers. Commun. 116, 475–490 (2021). https://doi.org/10.1007/s11277-020-07724-1
  15. Kaur, S. Analysis of inter-satellite free-space optical link perfor-mance considering different system parameters. Opto-Electron. Rev. 27, 10–13 (2019). https://doi.org/10.1016/j.opelre.2018.11.002
  16. Shah, D., Joshi, H. & Kothari, D. Comparative BER analysis of free space optical system using wavelength diversity over exponentiated weibull channel. J. Electron. Telecommun. 67, 665–672 (2021). https://doi.org/10.24425/ijet.2021.137860
  17. Ghassemlooy, Z. & Popoola, W. Terrestrial Free-Space Optical Communications. in Mobile and Wireless Communications (eds. Fares, S. A. & Adachi, F.) 355–392 (IntechOpen, 2010). https://doi.org/10.5772/7698
  18. Ricklin, J. , Hammel, S. M., Eaton, F. D. & Lachinova, S. L. Atmospheric Channel Effects on Free-Space Laser Communication. in Optical and Fiber Communication Reports: Free-Space Laser Communications (eds. Majumdar, A. K. & Ricklin, J. C.) 9–56 (Springer, 2006). https://doi.org/10.1007/978-0-387-28677-8_2
  19. Ghassemlooy, Z., Popoola, W. & Rajbhandari, S. Optical Wireless Communications: System and Channel Modelling with Matlab®. (CRC press, 2019).
  20. Kim, I. , McArthur, B. & Korevaar, E. J. Comparison of Laser Beam Propagation at 785 Nm And 1550 Nm In Fog And Haze For Optical Wireless Communications. in Optical Wireless Communications, Proc. SPIE 4214, 26–37 (2001). https://doi.org/10.1117/12.417512
  21. Al Naboulsi, M. Sizun, H. & de Fornel, F. Fog attenuation prediction for optical and infrared waves. Opt. Eng. 43, 319–329 (2004). https://doi.org/10.1117/1.1637611
  22. Brown, R. W. Optical channels. Fibres, clouds, water and the atmosphere. J. Mod. Opt. 36, 552 (1989). https://doi.org/10.1080/09500348914550651
  23. Sree Madhuri, A., Immadi, G. & Venkata Narayana, M. Estimation of effect of fog on terrestrial free space optical communication link. Pers. Commun. 112, 1229–1241 (2020). https:/doi.org/10.1007/s11277-020-07098-4
  24. Friedlander, S. & Topper, L. Turbulence: Classic Papers on Statistical Theory. (Interscience Publishers, 1961).
  25. Kolmogorov, A. The local structure of turbulence in incom-pressible viscous fluid for very large Reynolds numbers. Proc. R. Soc. A 434, 9–13 (1991). https://doi.org/10.1098/rspa.1991.0075
  26. Zhu, X. & Kahn, J. Free-space optical communication through atmospheric turbulence channels. IEEE Trans. Commun. 50, 1293–1300 (2002). https://doi.org/10.1109/TCOMM.2002.800829
  27. Dat, P. et al. A Study on Transmission of RF Signals over a Turbulent Free Space Optical Link. in 2008 IEEE Int. Topical Meeting on Microwave Photonics jointly held with 2008 Asia-Pacific Microwave Photonics Conf. 173–176 (2008) https://doi.org/10.1109/MWP.2008.4666664
  28. Makarov, D. , Tretyakov, M. Y. & Rosenkranz, P. W. Revision of the 60-GHz atmospheric oxygen absorption band models for practical use. J. Quant. Spectrosc. Radiat. Transf. 243, 106798 (2020). https://doi.org/10.1016/j.jqsrt.2019.106798
  29. He, Q., Li, J., Wang, Z. & Zhang, L. Comparative study of the 60 GHz and 118 GHz oxygen absorption bands for sounding sea surface barometric pressure. Remote Sens. 14, 2260 (2022). https://doi.org/10.3390/rs14092260
  30. Arvas, M. & Alsunaidi, M. Analysis of Oxygen Absorption at 60 GHz Frequency Band. in 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting Proc. 2127–2128 (2019) https://doi.org/10.1109/APUSNCURSINRSM.2019.8888884
  31. ITU-R Recomendation. Attenuation Due to Clouds and Fog https://www.itu.int/rec/R-REC-P.840-3-199910-S/en (1999).
  32. Crane, R. A Two-Component Rain Model For the Prediction of Attenuation and Diversity Improvement https://ntrs.nasa.gov/api/citations/19820025716/downloads/19820025716.pdf (1982).
  33. ITU-R Recomendation. Recommendation Itu-R P.838-1 Specific Attenuation Model for Rain for Use in Prediction Methods https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.838-1-199910-S!!PDF-E.pdf (1999).
  34. Amarasinghe, Y., Zhang, W., Zhang, R., Mittleman, D. & Ma, J. Scattering of terahertz waves by snow. J. Infrared Millim. Terahertz Waves 41, 215–224 (2020). https://doi.org/10.1007/s10762-019-00647-4
  35. Davis, C. , Smolyaninov, I. I. & Milner, S. D. Flexible optical wireless links and networks. IEEE Commun. Mag. 41, 51–57 (2003). https://doi.org/10.1109/MCOM.2003.1186545
Go to article

Authors and Affiliations

Isanaka Lakshmi Priya
1
ORCID: ORCID
Murugappa Meenakshi
1
ORCID: ORCID

  1. Department of Electronics and Communication, Anna University, Guindy, Chennai 600025, India
Download PDF Download RIS Download Bibtex

Abstract

The article presents state of work in technology of free-space optical communications (Free Space Optics − FSO). Both commercially available optical data links and their further development are described. The main elements and operation limiting factors of FSO systems have been identified. Additionally, analyses of FSO/RF hybrid systems application are included. The main aspects of LasBITer project related to such hybrid technology for security and defence applications are presented.

Go to article

Authors and Affiliations

Janusz Mikołajczyk
Zbigniew Bielecki
Maciej Bugajski
Józef Piotrowski
Jacek Wojtas
Waldemar Gawron
Dariusz Szabra
Artur Prokopiuk
Download PDF Download RIS Download Bibtex

Abstract

The paper presents verification of a peak detection method cooperating with infrared radiation detector module applications. The work has been divided into parts including SPICE simulations and presentation of results obtained with the constructed prototype. The design of the peak detector dedicated to applications with very short pulses requires a different approach than that for standard solutions. It is mainly caused due to the ratio of pulse width and time period. In the described application this ratio is less than 10%. The paper shows testing of an analogue circuit which is capable to be inserted in these applications.

Go to article

Authors and Affiliations

Krzysztof Achtenberg
Janusz Mikołajczyk
Dariusz Szabra
Artur Prokopiuk
Zbigniew Bielecki
Download PDF Download RIS Download Bibtex

Abstract

Local weather conditions have an impact on the availability of free-space optical (FSO) communication. The variation in meteorological parameters, such as temperature, humidity, and wind speed, leads to variations of the refractive index along the transmission path. These refractive index inhomogeneities produced by atmospheric turbulence induce optical turbulence which is responsible for random fluctuations in the intensity of the laser beam that carries the signal (irradiance) called scintillations that can significantly degrade the performance of FSO systems. This paper aims to investigate the feasibility of deploying FSO communication technology under scintillation effects in any urban region and atmospheric environment. To achieve that, firstly by utilizing the Hufnagel-Vally day with the Sadot and Kopeika models together, the scintillation strength for a specified region, Sulaimani City in north-eastern Iraq as an example, has been estimated through the calculation of the refractive index structure parameter (Cn2) over a period of 10 years and it was found to be at the strong turbulence level. Secondly, from the same estimated parameter, the scintillation attenuation of the signal carrying the laser beam intensity can be calculated to investigate the feasibility of FSO communication using Optysistem-7 software. The optimal link distance for north-eastern Iraq (Sulaimani City) has been found to be within the limit of about 5.5 km. Analysing the max. Q-factor, bit-error rate and signal to noise ratio for an average of 120 months between 2013–2022 assessed the best and worst seasons for FSO.
Go to article

Authors and Affiliations

Aras S. Mahmood
1

  1. Physics Department, College of Education, University of Sulaimani, Sulaimani, Kurdistan Region / Iraq
Download PDF Download RIS Download Bibtex

Abstract

An indoor localization system is proposed based on visible light communications, received signal strength, and machine learning algorithms. To acquire an accurate localization system, first, a dataset is collected. The dataset is then used with various machine learning algorithms for training purpose. Several evaluation metrics are used to estimate the robustness of the proposed system. Specifically, authors’ evaluation parameters are based on training time, testing time, classification accuracy, area under curve, F1-score, precision, recall, logloss, and specificity. It turned out that the proposed system is featured with high accuracy. The authors are able to achieve 99.5% for area under curve, 99.4% for classification accuracy, precision, F1, and recall. The logloss and precision are 4% and 99.7%, respectively. Moreover, root mean square error is used as an additional performance evaluation averaged to 0.136 cm.
Go to article

Bibliography

  1. Luo, J., Fan, L. & Li, H. Indoor positioning systems based on visible light communication: State of the art. IEEE Commun. Surv. Tutor. 19, 2871–2893 (2017). https://doi.org/10.1109/COMST.2017.2743228
  2. Cobos, M., Antonacci, F., Alexandridis, A., Mouchtaris, A. & Lee, B. A survey of sound source localization methods in wireless acoustic sensor networks. Commun. Mob. Comput. 2017, 395282 (2017). https://doi.org/10.1155/2017/3956282
  3. Ghorpade, S., Zennaro, M. & Chaudhari, B. Survey of localization for internet of things nodes: approaches, challenges and open issues. Future Internet 13, 210 (2021). https://doi.org/10.3390/fi13080210
  4. El-Fikky, A. R. A. et al. On the performance of adaptive hybrid MQAM–MPPM scheme over Nakagami and log-normal dynamic visible light communication channels. Appl. Opt. 59, 1896–1906 (2020). https://doi.org/10.1364/AO.379893
  5. Shi, L. et al. Experimental testbed for VLC-based localization framework in 5G internet of radio light. in 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS) 430–433 (2019). https://doi.org/10.1109/ICECS46596.2019.8964680
  6. Ong, Z., Rachim, V. & Chung, W. Y. Novel electromagnetic-interference-free indoor environment monitoring system by mobile camera-image-sensor-based VLC. IEEE Photon. J. 9, 1–11 (2017). https://doi.org/10.1109/JPHOT.2017.2748991
  7. Lian, J., Vatansever, Z., Noshad, M. & Brandt-Pearce, M. Indoor visible light communications, networking, and applications. Phys. Photonics 1, 012001 (2019). http://doi.org/10.1088/2515-7647/aaf74a
  8. Achroufene, A., Amirat, Y. & Chibani, A. RSS-based indoor localization using belief function theory. IEEE Trans. Autom. Sci. Eng. 16, 1163–1180 (2018). https://doi.org/10.1109/TASE.2018.2873800
  9. Pelant, J. et al. BLE device indoor localization based on RSS fingerprinting mapped by propagation modes. in 27th International Conference Radioelektronika 1–5 (2017). https://doi.org/10.1109/RADIOELEK.2017.7937584
  10. dos Santos Lima Junior, M., Halapi, M. & Udvary, E. Design of a real-time indoor positioning system based on visible light communication. Radioengineering 29, 445–451 (2020). http://doi.org/10.13164/re.2020.0445
  11. Shawky, E., El-Shimy, M., Mokhtar, A., El-Badawy, E. A. & Shalaby, H. M. Improving the visible light communication localization system using Kalman filtering with averaging. J. Opt. Soc. Am. B. 37, A130–A138 (2020). https://doi.org/10.1364/JOSAB.395056
  12. Erol, B. et al. Improved deep neural network object tracking system for applications in home robotics. in Computational Intelligence for Pattern Recognition (eds. Pedrycz, W. & Chen, S. M.) 369–395 (Springer, 2018). http://doi.org/10.1007/978-3-319-89629-8_14
  13. Ghonim, A. , Salama, W. M., El-Fikky, A. E. R. A., Khalaf, A. A. & Shalaby, H. M. Underwater localization system based on visible-light communications using neural networks. Appl. Opt. 60, 3977–3988 (2021). https://doi.org/10.1364/AO.419494
  14. Chuang, Y.-C., Li, Z.-Q., Hsu, C.-W., Liu, Y. & Chow, C.-W. Visible light communication and positioning using positioning cells and machine learning algorithms. Express 27, 16377–16383 (2019). https://doi.org/10.1364/OE.27.016377
  15. Qiu, Y., Chen, H. & Meng, W. X. Channel modeling for visible light communications—a survey. Wirel. Commun. Mob. Comput.16, 2016–2034 (2016).‏ https://doi.org/10.1002/wcm.2665
  16. Komine, T. & Nakagawa, M. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 50, 100–107 (2004). https://doi.org/10.1109/TCE.2004.1277847
  17. Ghassemlooy, Z., Popoola, W. & Rajbhandari, S. Optical Wireless Communications: System and Channel Modelling With Matlab®. (CRC Press, 2019). https://doi.org/10.1201/9781315151724
  18. Kumar, D. , Amgoth, T. & Annavarapu, C. S. R. Machine learning algorithms for wireless sensor networks: A survey. Inf. Fusion 49, 1–25 (2019). https://doi.org/10.1016/j.inffus.2018.09.013
  19. Guo, G., Wang, H., Bell, D., Bi, Y. & Greer, K. KNN model-based approach in classification. in OTM confederated international conferences “On the move to meaningful internet systems 2003” (eds. Meersman, R., Tari, Z. & Schmidt, D. ) 986–996 (Springer, Berlin, Heidelberg, 2003). https://doi.org/10.1007/978-3-540-39964-3_62
  20. Rish, I. An empirical study of the naive Bayes classifier. in IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence 3, 41–46 (2001).
  21. Wu, X. et al. Top 10 algorithms in data mining. Inf. Syst. 14, 1–37 (2008). https://doi.org/10.1007/s10115-007-0114-2
  22. Zhang, Y., Saxe, A. , Advani, M. S. & Lee, A. A. Energy–entropy competition and the effectiveness of stochastic gradient descent in machine learning. Mol. Phys. 116, 3214–3223 (2018). https://doi.org/10.1080/00268976.2018.1483535
  23. Dreiseitl, S. & Ohno-Machado, L. Logistic regression and artificial neural network classification models: a methodology review. Biomed. Inform. 35, 352–359 (2002). https://doi.org/10.1016/s1532-0464(03)00034-0
  24. Orange Data-mining, (2019). https://orangedatamining.com
  25. Purushotham, S. & Tripathy, B. Evaluation of classifier models using stratified tenfold cross validation techniques. in International Conference on Computing and Communication Systems 680–690 (2011). https://doi.org/10.1007/978-3-642-29216-3_74
  26. Daoud, M. & Mayo, M. A survey of neural network-based cancer prediction models from microarray data. Intell. Med. 97, 204–214 (2019). https://doi.org/10.1016/j.artmed.2019.01.006
  27. Ssekidde, P., Eyobu, O. , Han, D. S. & Oyana, T. J. Augmented CWT features for deep learning-based indoor localization using WiFi RSSI data. Appl. Sci. 11, 1806 (2021). https://doi.org/10.3390/app11041806
  28. Chen, Z., Al Hajri, M. , Wu, M., Ali, N. T. & Shubair, R. M. A novel real-time deep learning approach for indoor localization based on rf environment identification. IEEE Sens. Lett. 4, 1–4 (2020). https://doi.org/10.1109/LSENS.2020.2991145
  29. Turgut, Z., Üstebay, S., Aydın, G. G. & Sertbaş, A. Deep learning in indoor localization using WiFi. in International Telecommunica­tions Conference 101–110 (2019).
    https://doi.org/10.1007/978-981-13-0408-8_9
  30. Tran, H. & Ha, C. Fingerprint-based indoor positioning system using visible light communication—a novel method for multipath reflections. Electronics 8, 63 (2019). https://doi.org/10.3390/electronics8010063
  31. Karmy, M., El Sayed, S. & Zekry, A. Performance enhancement of an indoor localization system based on visible light communication using RSSI/TDOA hybrid technique. Commun. 15, 379–389 (2020). http://doi.org/10.12720/jcm.15.5.379-389
  32. Wang, L., Guo, C., Luo, P. & Li, Q. Indoor visible light localization algorithm based on received signal strength ratio with multi-directional LED array. in 2017 IEEE International Conference on Communications Workshops (ICC Workshops) 138–143 (2017). https://doi.org/10.1109/ICCW.2017.7962647
Go to article

Authors and Affiliations

Alzahraa M. Ghonim
1
Wessam M. Salama
2
Ashraf A. M. Khalaf
1
ORCID: ORCID
Hossam M. H. Shalaby
3 4

  1. Department of Electrical Engineering, Faculty of Engineering, Minia University, Minia 61111, Egypt
  2. Department of Basic Science, Faculty of Engineering, Pharos University, Alexandria, Egypt
  3. Electrical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
  4. Department of Electronics and Communications Engineering, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The welcome and adaptation of optical wireless technology by the modern era has brought forward the concept of an inter-satellite free-space optical communication system. In the present work, I study the combined effect of selection of different operating wavelengths and detector types along with the pointing errors at the transmitter and receiver side on the performance of an inter-satellite free-space optical link. The link performance has been optimized by measuring and analyzing the bit error rate and quality-factor of received signal under different scenarios. Performance of the inter-satellite link has also been investigated considering different modulation formats and data rates for LEO and MEO distances.

Go to article

Authors and Affiliations

S. Kaur
Download PDF Download RIS Download Bibtex

Abstract

This paper presents some construction analysis and test results of a Free Space Optics system operating at the wavelength of 9.35 μm. In the system, a quantum cascade laser and a photoreceiver with mercury cadmium telluride photodetectors were used. The main parameters of these elements were discussed taking into account a data link operation. It also provides to determine a data range for various weather conditions related to scattering and scintillation. The results of numerical analyses defined the properties of currently available FSO technologies working in the near infrared or in the short infrared range of spectrum versus the performances of the developed system. The operation of this system was verified in three different test environments. The obtained results may also contain important issues related to the practical application of any FSO system.

Go to article

Authors and Affiliations

Janusz Mikolajczyk
Dariusz Szabra
Artur Prokopiuk
Krzysztof Achtenberg
ORCID: ORCID
Jacek Wojtas
ORCID: ORCID
Zbigniew Bielecki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The performance of free-space optical (FSO) communications that using an optical amplifier (OA) in the scheme of an amplify-received (AR)-relaying has a major drawback in the detection of input signal quality under the effects of turbulence. As an OA is based on a fiber-detection (FD) method to receive and delivers a signal at the amplification process stage, there is an opportunity to implement an optical spatial filter (OSF) to improve the quality of an input signal. In this paper, as the continuation of previous work on the direct-detection, the OSF is applied on the AR-relaying. The novelty proposed in this work is the improvement of FD method where the OSF is designed as the integration of cone reflector, pinhole and multi-mode fiber with an OA. The OSF produces an optical signal, the input of the OA, which minimizes the effects of turbulence, background noise and signal fluctuation. Thus, OA in AR-relaying produces signal output with high power and rise up below threshold level. Additionally, an OSF with a lower pinhole diameter produces the best quality of the signal spectral to be delivered into an EDFA. Through this implementation, the performance of optical relaying on FSO can be significantly improved.
Go to article

Authors and Affiliations

Ucuk Darusalam
1 2
Purnomo Sidi Priambodo
3
Fitri Yuli Zulkifli
3
Eko Tjipto Rahardjo
3

  1. Department of Informatics, Faculty of Information and Communications Technology, Universitas Nasional, Jakarta, Indonesia
  2. Universitas Siber Asia, Jakarta, Indonesia
  3. Department of Electrical Engineering, Universitas Indonesia, Depok, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a new construction of an optical pulse amplitude monitoring unit (PAMU) used in a transceiver of Free Space Optics. It consists of a buffer, constant fraction discriminator (CFD), delay line, and a sample and hold (S&H) circuit. In the design FSO system, the PAMU provides to monitor transmitted and received optical pulses with duration of few ns. Using this device, there is no need to apply complicated and expensive digitizing systems. The unique aspect of its construction is to control S&H circuit using the CFD. The lab model of this unit allows to perform tests to define some virtues of constant fraction and leading-edge discriminators. The results were implemented in optical signal monitoring of FSO system. The unit was prepared to cooperate with two different detection modules. Using this setup, it was possible, e.g. to determine operation characteristics of FSO transmitter, identify interruption of transmission, and control light power to provide high safety of work.

Go to article

Authors and Affiliations

K. Achtenberg
J. Mikołajczyk
D. Szabra
A. Prokopiuk
Z. Bielecki
Download PDF Download RIS Download Bibtex

Abstract

The paper is a review of analog and digital electronics dedicated to monitor nanosecond pulses. Choosing the optimal peak detector construction depends on many factors for example precision, complexity, or costs. The work shows some virtues and limitations of selected peak detection methods, for example standard peak detector with rectifier, sample and hold circuit with triggering units and ADC fast acquisition. However, the main attention is paid to problems of results from effective triggering signal for sample and hold operation. The obtained results allow for designing a peak detector construction as an alternative for costly and very complex fast acquisition systems based on ADC and FPGA technologies.

Go to article

Authors and Affiliations

Krzysztof Achtenberg
ORCID: ORCID
Janusz Mikołajczyk
ORCID: ORCID
Dariusz Szabra
Artur Prokopiuk
Zbigniew Bielecki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the differential binary modulation for decode-and-forward (DF) based relay-assisted free space optical (FSO) network under the effect of strong atmospheric turbulence together with misalignment error (ME). The atmospheric fading links experience K-distributed turbulence. First we derive novel closed form expression for average bit error rate (BER) and outage probability (OP) in terms of Meijer’s G function. Further, the OP of differential DF-FSO system with multiple relays is derived. We also analyze the asymptotic performance for the sake of getting the order of diversity and the coding gain. The power allotment term is utilized to examine the effect of different power allotment techniques on BER and OP. The simulation results have been used to validate the derived analytical results.
Go to article

Authors and Affiliations

Deepti Agarwal
1
Poonam Yadav
2

  1. Department of ECE, Delhi Technical Campus, Greater Noida, U.P, India
  2. Department of ECE, M.G.M College of Engineering and Technology, Noida, U.P, India

This page uses 'cookies'. Learn more