Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 23
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of studies on the efficacy of water desalination (i.e. Elimination of NaCl ions from the solution) using graphene-polyamide composite membranes. The membrane used for filtration consists of a monolayer of polycrystalline graphene on a porous polyamide carrier support (nylon 66). The degree of desalination for an aqueous NaCl solution percolated through the membrane was 18%. In the future this type of membrane may replace the currently used reverse osmosis membranes.

Go to article

Authors and Affiliations

K. Dybowski
P. Kowalczyk
P. Kula
A. Jeziorna
R. Atraszkiewicz
Ł. Kołodziejczyk
P. Zawadzki
D. Nowak
T. Kazimierczak
M. Kucińska
Download PDF Download RIS Download Bibtex

Abstract

This article presents the research results on impact of the method of polycrystalline graphene layers separation from the growth substrate on the obtained carbon material quality. The studies were carried out on graphene sheets obtained by metallurgical method on a liquid metal substrate (HSMG® graphene). The graphene was separated using chemical etching method or the electrochemical delamination method, by separating by means of electrolysis. During electrolysis, hydrogen is emitted on a graphene-covered of cathode (metal growth substrate) as a result of the voltage applied. The graphene layer breaks away from metallic substrate by gas accumulation between them. The results from these separation processes were evaluated by means of different tools, such as SEM, TEM and AFM microscopy as well as Raman Spectroscopy. In summary, the majority of analyses indicate that the graphene obtained as a result of hydrogen delamination possesses higher purity, smaller size and number of defects, its surface is smooth and less developed after the transfer process to the target substrate.

Go to article

Authors and Affiliations

K. Dybowski
G. Romaniak
P. Kula
A. Jeziorna
P. Kowalczyk
R. Atraszkiewicz
Ł. Kołodziejczyk
D. Nowak
P. Zawadzki
M. Kucińska
Download PDF Download RIS Download Bibtex

Abstract

In this work we propose and analyze the possibility of creating terahertz plasmon-emitting graphene-channel transistor. It is shown that at electric pumping the damping of the terahertz plasmons can give way to their amplification, when the real part of the dynamic conductivity of graphene becomes negative in the terahertz range of frequencies due to the interband population inversion.

Go to article

Authors and Affiliations

A.A. Dubinov
V.Ya. Aleshkin
S.V. Morozov
V. Ryzhii
T. Otsuji
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the usage of graphene transistors is introduced to be a suitable solution for extending low power designs. Static and current mode logic (CML) styles on both nanoscale graphene and silicon FINFET technologies are compared. Results show that power in CML styles approximately are independent of frequency and the graphene-based CML (GCML) designs are more power-efficient as the frequency and complexity increase. Compared to silicon-based CML (Si-CML) standard cells, there is 94% reduction in power consumption for G-CML counterparts. Furthermore, a G-CML 4-bit adder respectively offers 8.9 and 1.7 times less power and delay than the Si-CML adder.

Go to article

Authors and Affiliations

Hassan Abdollahi
Reza Hooshmand
Hadi Owlia
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research on nanocomposite nickel/graphene oxide (Ni / GO) coatings produced by electrochemical reduction method on a steel substrate. Discussed is the method of manufacturing composite coatings with nickel matrix and embedded graphene oxide flakes. For comparative purposes, the studies also included a nanocrystalline Ni coating without embedded graphene oxide flakes. Graphene oxide was characterized by Raman spectroscopy, infrared spectroscopy (FTIR) and transmission (TEM) and scanning (SEM) electron microscopy. Results of studies on the structure of nickel and composite Ni/GO coatings deposited in a bath containing different amount of graphene oxide are presented. The coatings were characterized by scanning electron microscopy, light microscopy, Raman spectroscopy and X-ray diffraction. The adhesion of the prepared coatings to the substrate was examined by the scratch method. The microhardness of the coatings was measured using the Vickers method on perpendicular cross-sections to the surface. Corrosion tests of the coatings were investigated using the potentiodynamic method. The influence of graphene oxide on the structure and properties of composite coatings deposited from baths with different content of graphene oxide was determined.

Go to article

Authors and Affiliations

G. Cieślak
M. Trzaska
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, aluminum-based composites have been produced by pure alumina (Al2O3) or pure graphene nanoplatelets (GNPs) in aluminum matrix because of the high compressive strength of alumina and the solid lubricant properties of graphene. However, there are no studies on the influence of both alumina and graphene reinforced aluminum composites. In this study, Al-Al2O3 and Al-Al2O3-GNPs composites were reinforced with pure alumina (between 0 and 30 wt.%), pure graphene (0, 0.1, 0.3, 0.5 wt.%), and their hybrid forms (Al2O3-GNPs) by the powder metallurgy method. This method involved ultrasonic dispensing, mixing, filtering, drying, pressing, and sintering processes. From the test results, the micro Vickers hardness of pure aluminum (28.2±1 HV) improved to 51.5±0.8 HV (Al-30Al2O3) and 63.1±1 HV (Al-30Al2O3-0.1GNPs). Similarly, the ultimate compressive strength (UCS) enhanced from 92.4±4 MPa (pure aluminum) to 165±4.5 MPa (Al-30Al2O3) and 188±5 MPa (Al-30Al2O3-0.1GNPs), respectively. In conclusion, the Vickers hardness and ultimate compressive strength of aluminum hybrid composites improved up to 0.1 wt.% graphene content. After 0.1 wt.% graphene content, these mechanical properties decreased because of the clumping of graphene nanoparticles.

Go to article

Authors and Affiliations

M. Can Şenel
M. Gürbüz
Download PDF Download RIS Download Bibtex

Abstract

This paper explores the parametric appraisal and machining performance optimization during drilling of polymer nanocomposites reinforced by graphene oxide/carbon fiber. The consequences of drilling parameters like cutting velocity, feed, and weight % of graphene oxide on machining responses, namely surface roughness, thrust force, torque, delamination (In/Out) has been investigated. An integrated approach of a Combined Quality Loss concept, Weighted Principal Component Analysis (WPCA), and Taguchi theory is proposed for the evaluation of drilling efficiency. Response surface methodology was employed for drilling of samples using the titanium aluminum nitride tool. WPCA is used for aggregation of multi-response into a single objective function. Analysis of variance reveals that cutting velocity is the most influential factor trailed by feed and weight % of graphene oxide. The proposed approach predicts the outcomes of the developed model for an optimal set of parameters. It has been validated by a confirmatory test, which shows a satisfactory agreement with the actual data. The lower feed plays a vital role in surface finishing. At lower feed, the development of the defect and cracks are found less with an improved surface finish. The proposed module demonstrates the feasibility of controlling quality and productivity factors.

Go to article

Bibliography

[1] Y.A. Roy, K. Gobivel, K.S.V Sekar, and S.S. Kumar. Impact of cutting forces and chip microstructure in high speed machining of carbon fiber – Epoxy composite tube. Archives of Metallurgy and Materials, 62(3):1771–1777, 2017. doi: 10.1515/amm-2017-0269.
[2] R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, and A.K. Bhowmick. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Progress in Polymer Science, 36(5):638–670, 2011. doi: 10.1016/j.progpolymsci.2010.11.003.
[3] P.F. Mayuet, F. Girot, A. Lamíkiz, S.R. Fernández-Vidal, J. Salguero, and M. Marcos. SOM/SEM based characterization of internal delaminations of CFRP samples machined by AWJM. Procedia Engineering, 132:693–700, 2015. doi: 10.1016/j.proeng.2015.12.549.
[4] A. Caggiano. Machining of fibre reinforced plastic composite materials. Materials, 11(3):442, 2018. doi: 10.3390/ma11030442.
[5] V. Sonkar, K. Abhishek, S. Datta, and S.S. Mahapatra. Multi-objective optimization in drilling of GFRP composites: A degree of similarity approach. Procedia Materials Science, 6:538–543, 2014. doi: 10.1016/j.mspro.2014.07.068.
[6] P. Kuppan, A. Rajadurai, and S. Narayanan. Influence of EDM process parameters in deep hole drilling of Inconel 718. The International Journal of Advanced Manufacturing Technology, 38(1–2):74–84, 2008. doi: 10.1007/s00170-007-1084-y.
[7] K. Abhishek, S. Datta, and S.S. Mahapatra. Multi-objective optimization in drilling of CFRP (polyester) composites: Application of a fuzzy embedded harmony search (HS) algorithm. Measurement, 77:222–239, 2016. doi: 10.1016/j.measurement.2015.09.015.
[8] B.C. Routara, S.D. Mohanty, S. Datta, A. Bandyopadhyay, and S.S. Mahapatra. Combined quality loss (CQL) concept in WPCA-based Taguchi philosophy for optimization of multiple surface quality characteristics of UNS C34000 brass in cylindrical grinding. The International Journal of Advanced Manufacturing Technology, 51(1–4):135–143, 2010. doi: 10.1007/s00170-010-2599-1.
[9] M.K. Das, K. Kumar, T.K. Barman, and P. Sahoo. Optimization of MRR and surface roughness in PAC of EN 31 steel using weighted principal component analysis. Procedia Technology, 14:211–218, 2014. doi: 10.1016/j.protcy.2014.08.028.
[10] S. Grieu, A. Traoré, M. Polit, and J. Colprim. Prediction of parameters characterizing the state of a pollution removal biologic process. Engineering Applications of Artificial Intelligence, 18(5):559–573, 2005. doi: 10.1016/j.engappai.2004.11.008.
[11] S.D. Lahane, M.K. Rodge, and S.B. Sharma. Multi-response optimization of wire-EDM process using principal component analysis. IOSR Journal of Engineering, 2(8):38–47, 2012. doi: 10.9790/3021-02833847.
[12] R. Ramanujam, K. Venkatesan, V. Saxena, R. Pandey, T. Harsha, and G. Kumar. Optimization of machining parameters using fuzzy based principal component analysis during dry turning operation of inconel 625 – A hybrid approach. Procedia Engineering, 97:668–676, 2014. doi: 10.1016/j.proeng.2014.12.296.
[13] H. Yang, R. Luo, S. Han, and M. Li. Effect of the ratio of graphite/pitch coke on the mechanical and tribological properties of copper-carbon composites. Wear, 268(11–12):1337–1341, 2010. doi: 10.1016/j.wear.2010.02.007.
[14] R.K. Verma, P.K. Pal, and B.C. Kandpal. Machining performance optimization in drilling of GFRP composites: A utility theory (UT) based approach. In: Proceedings of 2016 International Conference on Control, Computing, Communication and Materials, pages 1–5, Allahbad, India, 21-22 Oct. 2016. doi: 10.1109/ICCCCM.2016.7918255.
[15] K. Palanikumar, J.C. Rubio, A. Abrão, A. Esteves, and J.P. Davim. Statistical analysis of delamination in drilling Glass Fiber-Reinforced Plastics (GFRP). Journal of Reinforced Plastics and Composites, 27(15):1615–1623, 2008. doi: 10.1177/0731684407083012.
[16] P.E. Faria, J.C. Campos Rubio, A.M. Abrão, and J.P. Davim. Dimensional and geometric deviations induced by drilling of polymeric composite. Journal of Reinforced Plastics and Composites, 28(19):2353–2363, 2009. doi: 10.1177/0731684408092067.
[17] V.N. Gaitonde, S.R. Karnik, J.C.C. Rubio, W. de Oliveira Leite, and J.P. Davim. Experimental studies on hole quality and machinability characteristics in drilling of unreinforced and reinforced polyamides. Journal of Composite Materials, 48(1):21–36, 2014. doi: 10.1177/0021998312467552.
[18] Niharika, B.P. Agrawal, I.A. Khan, and Z.A. Khan. Effects of cutting parameters on quality of surface produced by machining of titanium alloy and their optimization. Archive of Mechanical Engineering, 63(4):531–548, 2016. doi: 10.1515/meceng-2016-0030.
[19] S. Chakraborty and P.P. Das. Fuzzy modeling and parametric analysis of non-traditional machining processes. Management and Production Engineering Review, 10(3):111–123, 2019. doi: 10.24425/mper.2019.130504.
[20] S. Prabhu and B.K. Vinayagam. Multiresponse optimization of EDM process with nanofluids using TOPSIS method and Genetic Algorithm. Archive of Mechanical Engineering, 63(1):45–71, 2016. doi: 10.1515/meceng-2016-0003.
[21] D. Palanisamy and P. Senthil. Optimization on turning parameters of 15-5PH stainless steel using taguchi based grey approach and TOPSIS. Archive of Mechanical Engineering, 63(3):397–412, 2016. doi: 10.1515/meceng-2016-0023.
[22] M.S. Węglowski. Experimental study and response surface methodology for investigation of FSP process. Archive of Mechanical Engineering, 61(4):539–552, 2014. doi: 10.2478/meceng-2014-0031.
[23] H. Majumder, T.R. Paul, V. Dey, P. Dutta, and A. Saha. Use of PCA-grey analysis and RSM to model cutting time and surface finish of Inconel 800 during wire electro discharge cutting. Measurement, 107:19–30, 2017. doi: 10.1016/j.measurement.2017.05.007.
[24] P.K. Kharwar and R.K. Verma. Grey embedded in artificial neural network (ANN) based on hybrid optimization approach in machining of GFRP epoxy composites. FME Transactions, 47(3):641–648, 2019. doi: 10.5937/fmet1903641P.
[25] R. Arun Ramnath, P.R. Thyla, N. Mahendra Kumar, and S. Aravind. Optimization of machining parameters of composites using multi-attribute decision-making techniques: A review. Journal of Reinforced Plastics and Composites, 37(2):77–89, 2018. doi: 10.1177/0731684417732840.
[26] K. Żak. Cutting mechanics and surface finish for turning with differently shaped CBN tools. Archive of Mechanical Engineering, 64(3):347–357, 2017. doi: 10.1515/meceng-2017-0021.
[27] R. Bielawski, M. Kowalik, K. Suprynowicz, W. Rządkowski, and P. Pyrzanowski. Experimental study on the riveted joints in Glass Fibre Reinforced Plastics (GFRP). Archive of Mechanical Engineering, 64(3):301–313, 2017. doi: 10.1515/meceng-2017-0018.
[28] A.K. Parida, R. Das, A.K. Sahoo, and B.C. Routara. Optimization of cutting parameters for surface roughness in machining of GFRP composites with graphite/fly ash filler. Procedia Materials Science, 6:1533–1538, 2014. doi: 10.1016/j.mspro.2014.07.134.
[29] M.C. Yip, Y.C. Lin, and C.L. Wu. Effect of multi-walled carbon nanotubes addition on mechanical properties of polymer composites laminate. Polymers and Polymer Composites, 19(2–3):131–140, 2011.
[30] I. Burmistrov, N. Gorshkov, I. Ilinykh, D. Muratov, E. Kolesnikov, S. Anshin, I. Mazov, J.-P. Issi, and D. Kusnezov. Improvement of carbon black based polymer composite electrical conductivity with additions of MWCNT. Composites Science and Technology, 129:79–85, 2016. doi: 10.1016/j.compscitech.2016.03.032.
[31] N.S. Mohan, A. Ramachandra, and S. M. Kulkarni. Influence of process parameters on cutting force and torque during drilling of glass-fiber polyester reinforced composites. Composite Structures, 71(3–4):407–413, 2005. doi: 10.1016/j.compstruct.2005.09.039.
[32] R. Bhat, N. Mohan, S. Sharma, R.A. Agarwal, A. Rathi, and K.A. Subudhi. Multi-response optimization of the thrust force, torque and surface roughness in drilling of glass fiber reinforced polyester composite using GRA-RSM. Materials Today: Proceedings, 19:333–338, 2019. doi: 10.1016/j.matpr.2019.07.608.
[33] T. Miyake, K. Mukae, and M. Futamura. Evaluation of machining damage around drilled holes in a CFRP by fiber residual stresses measured using micro-Raman spectroscopy. Mechanical Engineering Journal, 3(6):1–16, 2016. doi: 10.1299/mej.16-00301.
[34] G.V.G. Rao, P. Mahajan, and N. Bhatnagar. Micro-mechanical modeling of machining of FRP composites – Cutting force analysis. Composites Science and Technology, 67(3–4):579–593, 2007. doi: 10.1016/j.compscitech.2006.08.010.
[35] R.K. Verma, K. Abhishek, S. Datta, P.K. Pal, and S.S. Mahapatra. Multi-response optimization in machining of GFRP (epoxy) composites: An integrated approach. Journal for Manufacturing Science and Production, 15(3):267–292, 2015. doi: 10.1515/jmsp-2014-0054.
[36] K. Pearson. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901. doi: 10.1080/14786440109462720.
[37] D. Zhao, H. Qi, and J. Pan. A predication analysis of the factors influencing minimum ignition temperature of coal dust cloud based on principal component analysis and support vector machine. Archives of Mining Sciences, 64(2):335–350, 2019. doi: 10.24425/ams.2019.128687.
[38] M. Ukamanal, P.C. Mishra, and A.K. Sahoo. Effects of spray cooling process parameters on machining performance AISI 316 steel: a novel experimental technique. Experimental Techniques, 44(1):19–36, 2020. doi: 10.1007/s40799-019-00334-y.
[39] G. Karuna Kumar, C. Maheswara Rao, and V.V.S. KesavaRao. Application of WPCA & CQL methods in the optimization of mutiple responses. Materials Today: Proceedings, 18:25–36, 2019. doi: 10.1016/j.matpr.2019.06.273.
[40] D. Das, P.C. Mishra, S. Singh, A.K. Chaubey, and B.C. Routara. Machining performance of aluminium matrix composite and use of WPCA based Taguchi technique for multiple response optimization. International Journal of Industrial Engineering Computations, 9(4):551–564, 2018. doi: 10.5267/j.ijiec.2017.10.001.
[41] S.D. Mohanty, S.S. Mahapatra, and R.C. Mohanty. PCA based hybrid Taguchi philosophy for optimization of multiple responses in EDM. SADHANA, 44(1):1–9, 2019. doi: 10.1007/s12046-018-0982-z.
[42] U.A. Khashaba. Delamination in drilling GFR-thermoset composites. Composite Structures, 63(3–4):313–327, 2004. doi: 10.1016/S0263-8223(03)00180-6.
[43] L. Gemi, S. Morkavuk, U. Köklü, and D.S. Gemi. An experimental study on the effects of various drill types on drilling performance of GFRP composite pipes and damage formation. Composites Part B: Engineering, 172:186–194, 2019. doi: 10.1016/j.compositesb.2019.05.023.
[44] L. Li, C. Yan, H. Xu, D. Liu, P. Shi, Y. Zhu, G. Chen, X. Wu, and W. Liu. Improving the interfacial properties of carbon fiber–epoxy resin composites with a graphene-modified sizing agent. Journal of Applied Polymer Science, 136(9):1–10, 2019. doi: 10.1002/app.47122.
[45] U. Aich, R.R. Behera, and S. Banerjee. Modeling of delamination in drilling of glass fiber-reinforced polyester composite by support vector machine tuned by particle swarm optimization. International Journal of Plastics Technology, 23(1):77–91, 2019. doi: 10.1007/s12588-019-09233-8.
[46] D. Kumar and K.K. Singh. Investigation of delamination and surface quality of machined holes in drilling of multiwalled carbon nanotube doped epoxy/carbon fiber reinforced polymer nanocomposite. Journal of Materials: Design and Applications, 233(4):647–663, 2019. doi: 10.1177/1464420717692369.
[47] P. Kyratsis, A.P. Markopoulos, N. Efkolidis, V. Maliagkas, and K. Kakoulis. Prediction of thrust force and cutting torque in drilling based on the response surface methodology. Machines, 6(2):24, 2018. doi: 10.3390/MACHINES6020024.
[48] C.C. Tsao. Thrust force and delamination of core-saw drill during drilling of carbon fiber reinforced plastics (CFRP). The International Journal of Advanced Manufacturing Technology, 37(1–2):23–28, 2008. doi: 10.1007/s00170-007-0963-6.
[49] A.M. Abrão, J.C.C. Rubio, P.E. Faria, and J.P. Davim. The effect of cutting tool geometry on thrust force and delamination when drilling glass fibre reinforced plastic composite. Materials & Design, 29(2):508–513, 2008. doi: 10.1016/j.matdes.2007.01.016.
[50] A. Janakiraman, S. Pemmasani, S. Sheth, C. Kannan, and A.S.S. Balan. Experimental investigation and parametric optimization on hole quality assessment during drilling of CFRP/GFRP/Al stacks. Journal of The Institution of Engineers (India): Series C, 101:291–302, 2020. doi: 10.1007/s40032-020-00563-w.
[51] S.Y. Park, W.J. Choi, C.H. Choi, and H.S. Choi. Effect of drilling parameters on hole quality and delamination of hybrid GLARE laminate. Composite Structures, 185:684–698, 2018. doi: 10.1016/j.compstruct.2017.11.073.
[52] R. Świercz, D. Oniszczuk-Świercz, J. Zawora, and M. Marczak. Investigation of the influence of process parameters on shape deviation after wire electrical discharge machining. Archives of Metallurgy and Materials, 64(4):1457–1462, 2019. doi: 10.24425/amm.2019.130113.
[53] K. Palanikumar. Modeling and analysis of delamination factor and surface roughness in drilling GFRP composites. Materials and Manufacturing Processes, 25(10):1059–1067, 2010. doi: 10.1080/10426910903575830.
[54] S.K. Rathore, J. Vimal, and D.K. Kasdekar. Determination of optimum parameters for surface roughness in CNC turning by using GRA-PCA. International Journal of Engineering, Science and Technology, 10(2):37–49, 2018. doi: 10.4314/ijest.v10i2.5.
[55] A. Gok. A new approach to minimization of the surface roughness and cutting force via fuzzy TOPSIS, multi-objective grey design and RSA. Measurement, 70:100–109, 2015. doi: 10.1016/j.measurement.2015.03.037.
[56] N.L. Bhirud and R.R. Gawande. Optimization of process parameters during end milling and prediction of work piece temperature rise. Archive of Mechanical Engineering, 64(3):327–346, 2017. doi: 10.1515/meceng-2017-0020.
[57] B.A. Rezende, F. de Castro Magalhães, and J.C. Campos Rubio. Study of the measurement and mathematical modelling of temperature in turning by means equivalent thermal conductivity. Measurement, 152:107275, 2020. doi: 10.1016/j.measurement.2019.107275.
[58] A. Bhattacharya, S. Das, P. Majumder, and A. Batish. Estimating the effect of cutting parameters on surface finish and power consumption during high speed machining of AISI 1045 steel using Taguchi design and ANOVA. Production Engineering, 3(1):31–40, 2009. doi: 10.1007/s11740-008-0132-2.
[59] A. Taşkesen and K. Kütükde. Experimental investigation and multi-objective analysis on drilling of boron carbide reinforced metal matrix composites using grey relational analysis. Measurement, 47:321–330, 2014. doi: 10.1016/j.measurement.2013.08.040.
[60] B.B. Nayak, K. Abhishek, S.S. Mahapatra, and D. Das. Application of WPCA based Taguchi method for multi-response optimization of abrasive jet machining process. Materials Today: Proceedings, 5(2):5138–5144, 2018. doi: 10.1016/j.matpr.2017.12.095.
[61] K. Palanikumar, L. Karunamoorthy, and N. Manoharan. Mathematical model to predict the surface roughness on the machining of glass fiber reinforced polymer composites. Journal of Reinforced Plastics and Composites, 25(4):407–419, 2006. doi: 10.1177/0731684405060568.
[62] R. Świercz, D. Oniszczuk-Świercz, and L. Dabrowski. Electrical discharge machining of difficult to cut materials. Archive of Mechanical Engineering, 65(4):461–476, 2018. doi: 10.24425/ame.2018.125437.
[63] A. Hamdi, S.M. Merghache, and T. Aliouane. Effect of cutting variables on bearing area curve parameters (BAC-P) during hard turning process. Archive of Mechanical Engineering, 67(1):73–95, 2020. doi: 10.24425/ame.2020.131684.
[64] V. Kavimani, K.S. Prakash, and T. Thankachan. Influence of machining parameters on wire electrical discharge machining performance of reduced graphene oxide/magnesium composite and its surface integrity characteristics. Composites Part B: Engineering, 167:621–630, 2019. doi: 10.1016/j.compositesb.2019.03.031.
[65] Y. Quan and L. Sun. Investigation on drilling-induced delamination of CFRP with infiltration method. Advanced Materials Research, 139–141:55–58, 2010. doi: 10.4028/www.scientific.net/AMR.139-141.55.
[66] O. Isbilir and E. Ghassemieh. Delamination and wear in drilling of carbon-fiber reinforced plastic composites using multilayer TiAlN/TiN PVD-coated tungsten carbide tools. Journal of Reinforced Plastics and Composites, 31(10):717–727, 2012. doi: 10.1177/0731684412444653.
Go to article

Authors and Affiliations

Kumar Jogendra
1
Rajesh Kumar Verma
1
Arpan Kumar Mondal
2

  1. Department of Mechanical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, India.
  2. Department of Mechanical Engineering, National Institute of Technical Teachers Training and Research, Kolkata, India.
Download PDF Download RIS Download Bibtex

Abstract

In this research, graphene oxide was introduced as an efficient flotation reagent for the selective separation of molybdenite from chalcopyrite. The performance of graphene oxide and its adsorption mechanism on chalcopyrite were investigated by flotation tests, FTIR spectra, and XPS measurements. First, graphene oxide was synthesised, and then its performance was evaluated by SEM, XRD, and EDX. Flotation tests were carried out in a hallimond flotation cell with a volume of 300 ml. Optimum flotation values were achieved at pH = 9 by adding 250 g/t of PAX (Potassium Amyl Xanthate) as a collector and 50 g/t of A65 (Poly Propylene Glycol) as a frother. The results showed high recovery, around 80% for molybdenite, while chalcopyrite was depressed in high amounts by employing 11 kg/t of graphene oxide as a depressant. Compared to common chalcopyrite depressants such as NaHS, Na2S, and C2H3NaO2S, graphene oxide had a higher potency in depressing, which can be applied as a green-depressant in the separation of molybdenite from chalcopyrite by the flotation process. Also, the validity of the depressing effect on chalcopyrite was verified by XPS and FTIR spectra.
Go to article

Authors and Affiliations

Afshin Namiranian
1
ORCID: ORCID
Mohammad Noaparast
1
ORCID: ORCID
Sied Ziaedin Shafaei Tonkaboni
1
ORCID: ORCID

  1. University of Tehran, Amirabad-Shomali, Kooye Daneshgah, 1915656535, Tehran, Iran
Download PDF Download RIS Download Bibtex

Abstract

This study evaluated the effect of milling speed and compaction pressure on the densification and morphology of the CuZn-Gr composite. The composite was prepared by using the powder metallurgy technique. The effect on the microstructural and compaction was determined based on different milling speeds. The different milling speeds involved were 175, 200, 225, and 250 rpm. Meanwhile, the different compaction pressures used in this study were 127, 250, 374, and 500 MPa. The properties of the milled powder gave the result to green density and densification parameters. The XRD pattern of Cu and Zn broadened as milling time increased.
Go to article

Authors and Affiliations

M.N. Masri
1
ORCID: ORCID
M. Mohammad
1
M. Yusoff
1
ORCID: ORCID
S. Mamat
1
ORCID: ORCID
P.T. Teo
1
ORCID: ORCID
R. Othman
2
A.R. Irfan
3 4
ORCID: ORCID
Pramod K. Singh
5
ORCID: ORCID

  1. Universiti Malaysia Kelantan, Faculty of Bioengineering and Technology, 17600 Jeli Kelantan, Malaysia
  2. Urich Technology (KC0023880-A), No. 457, Lorong 7/1, Taman Semarak, 08000 Sungai Petani, Kedah, Malaysia
  3. Universiti Malaysia Perlis, Faculty of Mechanical Engineering Technology, Perlis, Malaysia
  4. Universiti Malaysia Perlis, Center of Excellence Geopolymer and Green Technology (CEGeoGTech), Perlis, Malaysia
  5. Sharda University, School of Basic Sciences and Research, Department of Physics, Center of Excellence on Solar Cells & Renewable Energy, Greater Noida, Uttar Pradesh 201308, India
Download PDF Download RIS Download Bibtex

Abstract

Owing to the excellent properties, graphene nanoplatelets (GNPs) show great reinforcing ability to improve the mechanical and tribological properties of Al nanocomposites for many automotive applications. In this work, the GNPs dispersion and reinforcing effect in Al nanocomposite was tested. Solvent dispersion via tip sonication and facile low energy ball milling (tumbling milling) using two milling speeds 200 and 300 rpm were employed to develop GNPs/Al powders. Sintering response of the GNPs/Al sintered samples was gauged at two temperatures (550oC and 620oC). The effects of GNPs content, milling rotation speed and sintering temperature on the density, hardness and wear properties of the nanocomposite were examined. The results indicate that relative density % decreases with increasing GNPs content due to possible reagglomeration. The highest hardness of 35.6% and wear rate of 76.68% is achieved in 0.3 wt.% GNPs/Al nanocomposite processed at 300 rpm and 620oC as compared to pure Al due to uniform dispersion, higher diffusion rate at a higher temperature and effective lubrication effect.

Go to article

Authors and Affiliations

Zeeshan Baig
Othman Mamat
Mazli Mustapha
Sadaqat Ali
Download PDF Download RIS Download Bibtex

Abstract

Graphene is a very promising material for potential applications in many fields. Since manufacturing technologies of graphene are still at the developing stage, low-frequency noise measurements as a tool for evaluating their quality is proposed. In this work, noise properties of polymer thick-film resistors with graphene nano-platelets as a functional phase are reported. The measurements were carried out in room temperature. 1/f noise caused by resistance fluctuations has been found to be the main component in the specimens. The parameter values describing noise intensity of the polymer thick-film specimens have been calculated and compared with the values obtained for other thick-film resistors and layers used in microelectronics. The studied polymer thick-film specimens exhibit rather poor noise properties, especially for the layers with a low content of the functional phase.

Go to article

Authors and Affiliations

Krzysztof Mleczko
Piotr Ptak
Zbigniew Zawiślak
Marcin Słoma
Małgorzata Jakubowska
Andrzej Kolek
Download PDF Download RIS Download Bibtex

Abstract

The presented research shows that commercially available graphene on quartz modified with rhenium oxide meets the requirements for its use as a conductive and transparent anode in optoelectronic devices. The cluster growth of rhenium oxide enables an increase in the work function of graphene by 1.3 eV up to 5.2 eV, which guarantees an appropriate adjustment to the energy levels of organic semiconductors used in organic light-emitting diode devices.
Go to article

Bibliography

  1. Zou, S. J. et al. Recent advances in organic light-emitting diodes: Toward smart lighting and displays. Chem. Front. 4, 788–820 (2020). https://doi.org/10.1039/c9qm00716d
  2. Hou, S. et al. Recent advances in silver nanowires electrodes for flexible organic/perovskite light-emitting diodes. Chem. 10, 864186 (2022). https://doi.org/10.3389/fchem.2022.864186
  3. Naghdi, S., Sanchez-Arriaga, G. & Rhee, K. Y. . Tuning the work function of graphene toward application as anode and cathode. Alloys Compd. 805, 1117–1134 (2019). https://doi.org/10.1016/j.jallcom.2019.07.187
  4. Adetayo, A. E., Ahmed, T. N., Zakhidov, A. & Beall, G. W. Improvements of organic light-emitting diodes using graphene as an emerging and efficient transparent conducting electrode material. Opt. Mat. 9, 2002102 (2021). https://doi.org/10.1002/adom.202002102
  5. Krukowski, P. et al. Work function tunability of graphene with thermally evaporated rhenium heptoxide for transparent electrode applications. Eng. Mat. 22, 1900955 (2020). https://doi.org/10.1002/adem.201900955
  6. Meyer, J. et al. Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes. Rep. 4, 5380 (2014). https://doi.org/10.1038/srep05380
  7. Meyer, J. et al. Transition metal oxides for organic electronics: Energetics, device physics and applications. Mat. 24, 5408–5427 (2012). https://doi.org/10.1002/adma.201201630
  8. Kowalczyk, D. A. et al. Local electronic structure of stable mono-layers of α-MoO3−x grown on graphite substrate. 2D Mat. 8, 025005 (2021). https://doi.org/10.1088/2053-1583/abcf10
  9. Kowalczyk, P. J. et al. Flexible photovoltaic cells based on two-dimensional materials and their hybrids. Przeglad Elektrotechniczny 98, 117–120 (2022). (in Polish) https://doi.org/10.15199/48.2022.02.26
  10. Kowalczyk, D. A. et al. Two-dimensional crystals as a buffer layer for high work function applications: the case of monolayer MoO3. ACS Appl. Mater. Interfaces. 14, 44506–44515 (2022). https://doi.org/10.1021/acsami.2c09946
  11. Lei, Y. et al. Graphene and beyond: recent advances in two-dimensional materials synthesis, properties, and devices. ACS Nanosci. Au (2022). https://doi.org/10.1021/acsnanoscienceau.2c00017
  12. Pabianek, K. et al. Interactions of Ti and its oxides with selected surfaces: Si(100), HOPG(0001) and graphene/4H-SiC(0001). Coat. Technol. 397, 126033 (2020). https://doi.org/10.1016/j.surfcoat.2020.126033
  13. Momeni Pakdehi, D. et al. Minimum resistance anisotropy of epitaxial graphene on SiC. ACS Appl. Mater. Interfaces. 10, 6039–6045 (2018). https://doi.org/10.1021/acsami.7b18641
  14. Miao, Y. et al. Small-size graphene oxide (GO) as a hole injection layer for high-performance green phosphorescent organic light-emitting diodes. Mater. Chem. C 9, 12408–12419 (2021). https://doi.org/10.1039/d1tc02898g
  15. Chen, Y., Gong, X. L. & Gai, J. G. Progress and challenges in transfer of large-area graphene films. Sci. 3, 1500343 (2016). https://doi.org/10.1002/advs.201500343
  16. Fisichella, G. et al. Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates. Beilstein Nanotechnol. 4, 234–242 (2013). https://doi.org/10.3762/bjnano.4.24
  17. Huet, B. & Raskin, J. P. Role of the Cu substrate in the growth of ultra-flat crack-free highly-crystalline single-layer graphene. Nanoscale 10, 21898–21909 (2018). https://doi.org/10.1039/c8nr06817h
  18. Zheng, F. et al. Critical stable length in wrinkles of two-dimensional materials. ACS Nano 14, 2137–2144 (2020). https://doi.org/10.1021/acsnano.9b08928
  19. Venables, J. A. Atomic processes in crystal growth. Sci. 299300, 798–817 (1994). https://doi.org/10.1016/0039-6028(94)90698-X
  20. Greiner, M. T. et al. The oxidation of rhenium and identification of rhenium oxides during catalytic partial oxidation of ethylene: An in-situ XPS study. Phys. Chem. 228, 521–541 (2014). https://doi.org/10.1515/zpch-2014-0002
Go to article

Authors and Affiliations

Paweł Krukowski
1
ORCID: ORCID
Michał Piskorski
1
ORCID: ORCID
Ruslana Udovytska
2
ORCID: ORCID
Dorota A. Kowalczyk
1
ORCID: ORCID
Iaroslav Lutsyk
1
ORCID: ORCID
Maciej Rogala
1
ORCID: ORCID
Paweł Dąbrowski
1
ORCID: ORCID
Witold Kozłowski
1
ORCID: ORCID
Beata Łuszczyńska
2
ORCID: ORCID
Jarosław Jung
2
ORCID: ORCID
Jacek Ulański
2
ORCID: ORCID
Krzysztof Matuszek
2
ORCID: ORCID
Aleksandra Nadolska
1
ORCID: ORCID
Przemysław Przybysz
1
ORCID: ORCID
Wojciech Ryś
1
ORCID: ORCID
Klaudia Toczek
1
ORCID: ORCID
Rafał Dunal
1
ORCID: ORCID
Patryk Krempiński
1
ORCID: ORCID
Justyna Czerwińska
1
ORCID: ORCID
Maxime Le Ster
1
ORCID: ORCID
Marcin Skulimowski
3
ORCID: ORCID
Paweł J. Kowalczyk
1
ORCID: ORCID

  1. Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90–236 Łódź, Poland
  2. Department of Molecular Physics (member of National Photovoltaic Laboratory, Poland), Lodz University of Technology, 116 Żeromskiego St., 90– 924 Łódź, Poland
  3. Department of Intelligent Systems, Faculty of Physics and Applied Informatics, University of Lodz, 149/152 Pomorska St., 90–236 Łódź, Poland
Download PDF Download RIS Download Bibtex

Abstract

Structural and optical properties of graphene with a vacancy and B, N, O and F doped graphene have been investigated computationally using density functional theory (DFT). We find that B is a p-type while N, O and F doped graphene layers, as well as graphene with a vacancy are n-type semiconductors. Optical properties for both cases of in plane (E ⊥ c) and out of plane (E || c) polarization of light are investigated. It is observed that with the increase in the number of electrons entering the supercell, the amount of absorption of the system decreases and the absorption peaks are transferred to higher energies (blue shift).

Go to article

Authors and Affiliations

M. Goudarzi
S.S. Parhizgar
J. Beheshtian
Download PDF Download RIS Download Bibtex

Abstract

We review recently proposed concepts of infrared and terahertz photodetectors based on graphene van der Waals heterostructures and HgTe-CdHgTe quantum well heterostructures and demonstrate their potential.

Go to article

Authors and Affiliations

M. Ryzhii
T. Otsuji
V. Ryzhii
V. Aleshkin
A. Dubinov
V.E. Karasik
V. Leiman
V. Mitin
M.S. Shur
Download PDF Download RIS Download Bibtex

Abstract

This study discusses the synthesis, characterization and development of self-healing nanocomposite of amino-terminated PDMS (Polydimethylsiloxane), Epoxy (EPON828¸ Diethylenetriamine (DETA)), and Graphene Oxide (GO).GOwas prepared using a modified Hummer’s method andwas incorporated into the PDMS-Epoxy composite in various ratios (0.1 wt.%, 0.3 wt.%, and 0.5 wt.%) using toluene as the dispersing medium. Fourier TransformInfrared Spectroscopy was used for confirming the presence of the designed/prepared structures, and thermo-mechanical analysis was performed to test the change in glass transition temperature and initiation temperature of self-healing process. The composite resins were coated on mild steel substrates by curing freshly prepared resins over the substrates at elevated temperatures. The corrosion behavior of mild steel in 3.5 wt.% NaCl solution before and after the coatings was studied using Tafel Electrochemical Polarization test. The self-healing properties of the materials were also studied by applying cuts on the material and letting them heal under elevated temperatures, and the results showed that the prepared coating demonstrated an effective corrosion resistance for mild steel for various marine applications.
Go to article

Authors and Affiliations

Krishna Moorthi
1 2
Vishesh Saxena
1 3
R.V. Siva Prasanna Sanka
4
Sravendra Rana
1

  1. University of Petroleum & Energy Studies (UPES), School of Engineering, Energy Acres, Bidholi, Dehradun, 248007, India
  2. Georgia Institute of Technology, Atlanta, GA, 30332, USA
  3. Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen AG 9747, The Netherlands
  4. Department of Mechanical Engineering, University Institute of Engineering, Chandigarh University, Mohali, India
Download PDF Download RIS Download Bibtex

Abstract

The behavioural model of a graphene field-effect transistor (GFET) is proposed. In this approach the GFET element is treated as a “black box” with only external terminals available and without considering the physical phenomena directly. The presented circuit model was constructed to reflect steady-state characteristics taking also into account GFET capacitances. The authors’ model is defined by a relatively small number of equations which are not nested and all the parameters can be easily extracted. It was demonstrated that the proposed model allows to simulate the steady-state characteristics with the accuracy approximately as high as in the case of the physical model. The presented compact GFET model can be used for circuit or system-level simulations in the future.

Go to article

Authors and Affiliations

Maciej Łuszczek
Marek Turzyński
Dariusz Świsulski
Download PDF Download RIS Download Bibtex

Abstract

A series of nanocomposite graphene/CoFe2O4 and graphene/NiFe2O4 hybrid materials was synthesized via facile, one-pot solvothermal route. The materials were obtained using two pressure methods: synthesis in the autoclave and synthesis in the microwave solvothermal reactor. The use of a microwave reactor enabled to significantly shorten the synthesis time up to 15 min. All the syntheses were carried out in a solution of ethanol. The effect of processing conditions and composite composition on the physicochemical properties and electric conductivity was studied. The specific surface area, density, morphology, phase composition, thermal properties and electric conductivity of the obtained composites were investigated. The results of studies of composites obtained in an autoclave and in a microwave reactor were compared.

Go to article

Authors and Affiliations

A. Jędrzejewska
D. Sibera
R. Pełech
R. Jędrzejewski
U. Narkiewicz
Download PDF Download RIS Download Bibtex

Abstract

Light weight, low density with high mechanical properties and corrosion resistance, aluminum is the most important material and is commonly used for high performance applications such as aerospace, military and especially automotive industries. The researchers who participate in these industries are working hard to further decrease the weight of end products according to legal boundaries of greenhouse gases. A lot of research was undertaken to produce thin sectioned aluminum parts with improved mechanical properties. Several alloying element addition were investigated. Yet, nowadays aluminum has not met these expectations. Thus, composite materials, particularly metal matrix composites, have taken aluminum’s place due to the enhancement of mechanical properties of aluminum alloys by reinforcements. This paper deals with the overview of the reinforcements such as SiC, Al2O3 and graphene. Graphene has recently attracted many researcher due to its superior elastic modulus, high fatigue strength and low density. It is foreseen and predicted that graphene will replace and outperform carbon nanotubes (CNT) in near future.
Go to article

Authors and Affiliations

U. Aybarc
D. Dispinar
M.O. Seydibeyoglu
Download PDF Download RIS Download Bibtex

Abstract

Graphene applications in electronic and optoelectronic devices have been thoroughly and intensively studied since graphene discovery. Thanks to the exceptional electronic and optical properties of graphene and other two-dimensional (2D) materials, they can become promising candidates for infrared and terahertz photodetectors.

Quantity of the published papers devoted to 2D materials as sensors is huge. However, authors of these papers address them mainly to researches involved in investigations of 2D materials. In the present paper this topic is treated comprehensively with including both theoretical estimations and many experimental data.

At the beginning fundamental properties and performance of graphene-based, as well as alternative 2D materials have been shortly described. Next, the position of 2D material detectors is considered in confrontation with the present stage of infrared and terahertz detectors offered on global market. A new benchmark, so-called “Law 19”, used for prediction of background limited HgCdTe photodiodes operated at near room temperature, is introduced. This law is next treated as the reference for alternative 2D material technologies. The performance comparison concerns the detector responsivity, detectivity and response time. Place of 2D material-based detectors in the near future in a wide infrared detector family is predicted in the final conclusions.

Go to article

Authors and Affiliations

A. Rogalski
Małgorzata Kopytko
ORCID: ORCID
Piotr Martyniuk
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Transparent Conductive Electrode (TCE) is an essential part of the optoelectronic and display devices such as Liquid Crystal Displays (LCDs), Solar Cells, Light Emitting Diodes (LEDs), Organic Light Emitting Diodes (OLEDs) and touch screens. Indium Tin Oxide (ITO) is a commonly used TCE in these devices because of its high transparency and low sheet resistance. However, scarcity of indium and brittle nature of ITO limit its use in future flexible electronics. In order to develop flexible optoelectronic devices with improved performance, there is a requirement of replacing the ITO with a better alternate TCE. In this work, several alternative TCEs including transparent conductive oxides, carbon nanotubes, conducting polymers, metal nanowires, graphene and composites of these materials are studied with their properties such as sheet resistance, transparency and flexibility. The advantage and current challenges of these materials are also presented in this work.

Go to article

Authors and Affiliations

S. Sharma
S. Shriwastava
S. Kumar
K. Bhatt
C. Charu Tripathi
Download PDF Download RIS Download Bibtex

Abstract

To clarify the effect of copper powder morphology on the microstructure and properties of copper matrix bulk composites reinforced with Ni-doped graphene, spherical and dendritic copper powders were selected to fabricate the Ni-doped graphene reinforced copper matrix bulk composites. The Ni-doped graphene were synthesized by hydrothermal reduction method, followed by mixing with copper powders, and then consolidated by spark plasma sintering. It is found that the Ni-doped graphene are well bonded with the dendritic copper powder, whereas Ni-doped graphene are relatively independent on the spherical copper powder. The copper base bulk composite prepared by the dendritic copper powder has better properties than that prepared by spherical copper powder. At 0.5wt.% Ni-doped graphene, the dendritic copper base bulk composite has a good combination of hardness, electrical conductivity and yield strength, which are 81.62 HV, 87.93% IACS and 164 MPa, respectively.
Go to article

Authors and Affiliations

Jituo Liu
1
ORCID: ORCID
Xianhui Wang
1
ORCID: ORCID
Jia Liu
2
ORCID: ORCID
Hangyu Li
1
Yan Liang
1
ORCID: ORCID
Jingyi Ren
1
ORCID: ORCID

  1. Xi’an University of Technology, School of Materials Science and Engineering, Xi’an 710048, P.R. China
  2. Xi’an Polytechnic University, School of Materials Science and Engineering, Xi’an 710048, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

In this work, a comparative study on the ballistic behaviour of friction stir processed AL6061 targets had been made. Base Metal AL6061 (BM) plates with 25 mm thickness were friction stir processed by adding Multi Walled Carbon Nano Tubes (MWCNT) and Graphene (G), producing AL6061-MWCNT and AL6061-G surface composites. Optical microscopy and microhardness test on BM, AL6061-MWCNT and AL6061-G samples were performed as per the standard procedure. It was noticed that uniform dispersion of ceramic particles and refined grains were obtained for the friction stir processed surface composites. From the microhardness test, it was perceived that friction stir processing had induced strengthening of surface composites, hence increasing the microhardness of AL6061-MWCNT and AL6061-G by ~60.3% and ~73.6% respectively. Also, ballistic experiments were conducted at 680±10 m/s by impacting Ø7.62×51 mm projectiles. AL6063 backing plates were placed to compare the ballistic behaviours AL6061-MWCNT and AL6061-G targets by depth of penetration. It was noted that the depth of penetration of AL6061-MWCNT and AL6061-G targets were 37.81% and 65.84% lesser than the BM target. Further, from the results of Post ballistic microscopy it was observed that the microstructure near and away from the penetration channel edge looks unchanged in BM target. However, the AL6061-MWCNT and AL6061-G targets showed considerable change in their morphology, by forming Adiabatic Shear Bands.
Go to article

Authors and Affiliations

U. Magarajan
1
ORCID: ORCID
S. Suresh Kumar
2
ORCID: ORCID

  1. Sri Venkateswara College of Engineering, Chennai, India
  2. Sri Sivasubramaniya Nadar College of Engineering, Chennai, India

This page uses 'cookies'. Learn more