Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Surface and groundwater resources are two important sources in meeting agricultural, urban, and industrial needs. Random supply of surface water resources has prevented these resources from being a reliable source of water supply at all times. Therefore, groundwater acts as insurance in case of water shortage, and maintaining the quality of these resources is very important. On the other hand, studying vulnerability and identifying areas prone to aquifer pollution seems necessary for the development and optimal management of these valuable resources. Identifying the vulnerabilities of the aquifer areas to pollution will lead to a greater focus on preserving those areas. Therefore, groundwater quality assessment was performed in this study using the groundwater quality index (GQI), and groundwater vulnerability to pollution was assessed using the DRASTIC index. GQI is developed based on the values of six quality parameters (Na +, Mg 2+, Ca 2+, SO 42–, Cl, and TDS). The DRASTIC index is developed based on the values of seven parameters (depth to the water table, net recharge, aquifer media, soil media, topography, impact of vadose zone, hydraulic conductivity). The zoning of both indexes has been done using geographic information system (GIS) software. The results show that the GQI of the region was about 93, and its DRASTIC index was about 86. Therefore, the quality of aquifer groundwater is excellent, and its vulnerability to pollution is low.
Go to article

Authors and Affiliations

Siti Mardiana
1
ORCID: ORCID
Rabeya Anzum
2
ORCID: ORCID
Ngakan Ketut Acwin Dwijendra
3
ORCID: ORCID
Ahmad Azhar Mansoor Al Sarraf
4
ORCID: ORCID
Anton Timoshin
5
ORCID: ORCID
Elena Sergushina
6
ORCID: ORCID
Iskandar Muda
7
ORCID: ORCID
Natalia Zhilnikova
8
ORCID: ORCID
Yasser Fakri Mustafa
9
ORCID: ORCID
Evgeny Tikhomirov
10
ORCID: ORCID

  1. Universitas Medan Area, Faculty of Agriculture, Medan, 20223, North Sumatera, Indonesia
  2. International Islamic University, Department of Electrical and Computer Engineering, Kuala Lumpur, Malaysia
  3. Udayana University, Faculty of Engineering, Bali, Indonesia
  4. Sawah University, College of Health and Medical Technology, Department of Medical Laboratory, Ministry of Higher Education and Scientific Research, Al-Muthanna, Samawa, Iraq
  5. I.M. Sechenov First Moscow State Medical University (Sechenov University), Department of Propaedeutics of Dental Diseases, Russia
  6. National Research Ogarev Mordovia State University, Republic of Mordovia, Saransk, Russia
  7. Universitas Sumatera Utara, Faculty Economic and Business, Department of Doctoral Program, Medan, Indonesia
  8. Saint Petersburg State University of Aerospace Instrumentation (SUAI), Institute of Fundamental Training and Technological Innovations, Russia
  9. University of Mosul, College of Pharmacy, Department of Pharmaceutical Chemistry, Iraq
  10. Bauman Moscow State Technical University, Department of Economics and Management, Russia
Download PDF Download RIS Download Bibtex

Abstract

Quality assessment of shallow groundwater table is very important because it is the water that recharges deeper aquifers and constantly feeds the water levels of our surface streams and wetlands. Continuous monitoring of large number of quality parameters is essential for effective maintenance of water quality through appropriate control measures. However, it is very difficult and laborious task for regular monitoring of all the parameters even if adequate manpower and laboratory facilities are available. Therefore, this study presents the statistical analysis of physico- chemical parameters (pH, EC, TDS, Na, K, Ca, Mg, HCO3, Cl, CO3, SO4, TH, B, F) using correlation and Principal Component Analysis. The statistical analysis of the groundwater quality variables indicated that most of the variables are highly correlated. The strong correlation is an opportunity to develop a regression equation and monitor using few parameters. This provides an easy and rapid method of continuous groundwater quality monitoring. Moreover, groundwater of the area showed significant compositional variation. The compositional variability has implications for the source and origin of groundwater quality in the study area.
Go to article

Authors and Affiliations

Megersa Olumana Dinka
1
ORCID: ORCID

  1. University of Johannesburg, Faculty of Engineering and the Built Environment, Department of Civil Engineering Sciences, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa
Download PDF Download RIS Download Bibtex

Abstract

Knowledge of the quantity and quality of groundwater is a prerequisite to encourage investment in the development of a region and to consider the sedentarisation of populations. This work synthesises and analyses data concerning the chemical quality of the available water acquired in the Foum el Gueiss catchment area in the Aures massif. Two families of waters are observed, on the one hand, calcium and magnesian chlorated-sulphate waters and on the other hand, calcium and magnesium bicarbonate waters. Multivariate statistical treatments (Principal Component Analysis – PCA and Discriminant Analysis – DA) highlight a gradient of minerality of the waters from upstream to downstream, mainly attributed to the impact of climate, and pollution of agricultural origin rather localised in the lower zones. These differences in chemical composition make it possible to differentiate spring, well and borehole waters. The main confusion is between wells and boreholes, which is understandable because they are adjacent groundwater, rather in the lower part of the catchment area. The confusion matrix on the dataset shows a complete discrimination with a 100% success rate. There is a real difference between spring water and other samples, while the difference between wells and boreholes is smaller. The confusion matrix for the cross-validation (50%).
Go to article

Bibliography

BENCER S., BOUDOUKHA A., MOUNI L. 2016. Multivariate statistical analysis of the groundwater of Ain Djacer area (Eastern of Algeria). Arabian Journal of Geosciences. Vol. 9(4), 248. DOI 10.1007/s12517-015-2277-6.
DRIAS T., ABDELHAMID K., BELLOULA M., SAADALI B., SAIBI H. 2020. Groundwater modelling of the Tebessa-Morsott alluvial aquifer (northeastern Algeria): A geostatistical approach. Groundwater for Sustainable Development. Vol. 11, 100444 DOI 10.1016/j.gsd.2020.100444.
COTE M. 1974. Les régions bioclimatiques de l’est algérien (CURER) [The bioclimatic regions of eastern Algeria (CURER)]. University of Constantine pp. 15.
GARCÍA G.M., HIDALGO M.D.V., BLESA M.A. 2001. Geochemistry of groundwater in the alluvial plain of Tucuman province, Argentina. Hydrogeology Journal. Vol. 9(6) p. 597–610.
HOUHA B., KHERICI N., KACHI S., VALLES V. 2008. Hydrochemical differentiation of salinisation process of the water in Endoreic Semi-Arid Basin: Case of Rémila Basin, Alegria. American Journal of Applied Sciences. Vol. 5(7) p. 891–895.
JACKSON R.B., CARPENTER S.R., DAHM C.N., MCKNIGHT D.M., NAIMAN R.J., POSTEL S.L., RUNNING S.W. 2001. Water in a changing world. Ecological Applications. Vol. 11(4) p. 1027–1045.
JOLLIFFE I.T. 2002. Principal component analysis. 2nd ed. New York. Springer. ISBN 978-0-387-22440-4 pp. 488.
LAFITTE R. 1939. Structure et relief de l’Aurès (Algérie) [Structure and relief of the Aures (Algeria)]. Bulletin de l’Association de Géographes Français. No. 119 p. 34–40.
LESSARD L. 1952. La géologie et les problèmes de l’eau en Algérie. T. 1 : Eléments de Technogéologie des Barrages Algériens et de quelques ouvrages annexes – Le barrage de Foum-El-Gueiss [Geology and water problems in Algeria. T. 1: Elements of Technogeology of the Algerian Dams and some annex works – The Foum-El-Gueiss Dam]. Vol. 1. XIXe congrès géologique international p. 251–258.
LI P., TIAN R., XUE C., WU J. 2017. Progress, opportunities and key fields for groundwater quaresearch under the impacts of human activities in China with a special focus on western China. Environmental Science and Pollution Research. Vol. 24(15) p. 13224–13234. DOI 10.1007/s11356-017-8753-7.
LIU F., SONG X., YANG L., HAN D., ZHANG Y., MA Y., BU H. 2015. The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, Northwestern China. Science of The Total Environment. Vol. 538 p. 327–340. DOI 10.1016/j.scitotenv.2015.08.057.
MA B., JIN M., LIANG X., LI J. 2017. Groundwater mixing and mineralization processes in a mountain–oasis–desert basin, northwest China: Hydrogeochemistry and environmental tracer indicators. Hydrogeology Journal. Vol. 26(1) p. 233–250. DOI 10.1007/s10040-017-1659-0.
MONITION L. 1966. Les graphiques a base trilineaire représentatifs de la composition chimique des eaux souterraines. Le diagramme en “losange” [The trilinear graphs are representative of the chemical composition of groundwater. The “diamond” diagram]. Bureau de recherches géologiques et minières, Direction scientifique département géologie Service d’hydrogéologie pp. 22.
MOSAAD S., EL ABD EL S.A., KEHEW A.E. 2019. Integration of geochemical data to assess the groundwater quality in a carbonate aquifer in the southeast of Beni-Suef city, Egypt. Journal of African Earth Sciences. Vol. 158, 103558. DOI 10.1016/j.jafrearsci .2019.103558. ONM 2018. National Weather Office, Climatic data archives. National Meteorological Office of Algeria.
PIPER A.M. 1953. A graphic representation in the geochemical interpretation of groundwater analyses. American Geophysical Union Transactions. Vol. 25 p. 914–923.
REJSEK F. 2002. Analyse des eaux – Aspects réglementaires et techniques [Water analysis – regulatory and technical aspects]. Paris. Sceren. ISBN 9782866174200 pp. 360.
RIEDEL T. 2019. Temperature-associated changes in groundwater quality. Journal of Hydrology. Vol. 572 p. 206–212. DOI 10.1016/j.jhydrol.2019.02.059.
RODIER J., LEGUBE B., MERLET N., BRUNET R. 2009. L’analyse de l’eau : Eaux naturelles, eaux résiduaires, eau de mer [Analysis of water: Natural water, wastewater, seawater]. 9th ed. Paris. Dunod. ISBN 978-2100072460 pp. 1600.
SARAVANAN K., SRINIVASAMOORTHY K., GOPINATH S., PRAKASH R., SUMA C.S. 2016. Investigation of hydrogeochemical processes and ground-water quality in Upper Vellar sub-basin Tamilnadu, India. Arabian Journal of Geosciences. Vol. 9(5), 372.
SELVAKUMAR S., CHANDRASEKAR N., KUMAR G. 2017. Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore, India. Water Re-sources and Industry. Vol. 17 p. 26–33. DOI 10.1016/j.wri.2017.02.002.
THILAGAVATHI R., CHIDAMBARAM S., PRASANNA M.V., THIVYA C., SINGARAJA C. 2012. A study on groundwater geochemistry and water quality in layered aquifers system of Pondicherry region, southeast India. Applied Water Science. Vol. 2 p. 253–269. DOI 10.1007/s13201-012-0045-2.
WAGH V.M., PANASKAR D.B., VARADE A.M., MUKATE S.V., GAIKWAD S.K., PAWAR R.S., MULEY A.A., AAMALAWAR M.L. 2016. Major ion chemistry and quality assessment of the groundwater resources of Nanded tehsil, a part of southeast Deccan Volcanic Province, Maharashtra, India. Environmental Earth Sciences. Vol. 75, 1418. DOI 10.1007/s712665-016-6212-2.
ZHOU Y., WEI A., LI J., YAN L., LI J. 2016. Groundwater quality evaluation and health risk assessment in the Yinchuan region, northwest China. Exposure and Health. Vol. 8(3) p. 443–456. DOI 10.1007/s12403-016-0219-5.
Go to article

Authors and Affiliations

Somia Lakhdari
1 2
ORCID: ORCID
Slimane Kachi
1
ORCID: ORCID
Vincent Valles
3
ORCID: ORCID
Laurent Barbiero
4
ORCID: ORCID
Belgacem Houha
2
ORCID: ORCID
Suzanne Yameogo
5
ORCID: ORCID
Meryem Jabrane
6
ORCID: ORCID
Naouel Dali
2
ORCID: ORCID

  1. University 8 May 1945, Faculty of Natural and Life Sciences and Earth Sciences and Universe, Department Ecology and Environment, P.O. Box 401, Guelma, 24000, Algeria
  2. Abbes Laghrour University, Department of Ecology and Environment, Khenchela 40004, Algeria
  3. Avignon University, National Research Institute for Agriculture, Food and the Environment, Mediterranean Environment and Modeling of Agro-Hydrosystems, Avignon, France
  4. The National Center for Scientific Research, Toulouse University, Midi-Pyrénées Observatory, UMR 5563, Géoscience Environement Toulouse, Toulouse, France
  5. Ouagadougou University Professor Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
  6. Mohammed V University, Faculty of Sciences, Geoscience, Water and Environment Laboratory, Rabat, Morocco
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to compare the physical-chemical quality parameters of shallow groundwater quality in peat bogs of the Łęczna-Włodawa Lake District in the context of the occurrence of selected boreal species of plant relics: dwarfbirch (Betula humilis Schrank), downy willow (Salix lapponum L. ) and swamp willow (Salix myrtylloides L. ). Analyzes of shallow groundwater quality parameters included physical-chemical parameters: reaction (pH), electrolytic conductivity(EC), dissolved organic carbon (DOC), total nitrogen (TN), ammonium nitrogen (NH4), nitrite nitrogen (NO2), nitrate nitrogen (NO3), total phosphorus (TP), phosphate (PO4), sulfate (SO2), sodium (Na), potassium (K), calcium (Ca) and mag-nesium (Mg) by certified laboratory tests.

It was found that the natural hydrochemical specification of peat bogs is characterized by fluctuations associated with the dynamics of internal metabolism of peat ecosystems without the visible impact of anthropopressure. This is confirmed by the concentration of nutrients: TNat the study sites were within a broad range of mean values: 16.92–45.31 mg·dm–3; NH4 (0.55–0.76 mg·dm–3); NO2 (0.06–4.33 mg·dm–3); and NO3 did not exceed 0.2 mg·dm–3, and concentration of TP adopted mean values in a range of 0.22–0.42 mg·dm–3.

The studied physical-chemical factors of shallow groundwater were within the habitat preferences of the studied species, but in differentiated qualitative and quantitative ways determined optimal conditions for building the population of the studied species. Particularly values of TP lower than other obtained values in a range of: 0.08–0.32 mg·dm–3; PO4 = 0.1 mg·dm–3; TN = 2.2–21.2 mg·dm–3; NH4 = 0.1–0.46 mg·dm–3; DOC = 24.6–55.9 mg·dm–3, as well as higher than average pH values in a range of: 5.34–5.95 and concentration of Ca = 5.67–28.1 mg·dm–3 and Mg = 0.56–2.41 mg·dm–3, as well as EC = 72.1–142.3 μS·cm–1 can be treated as a condition favouring proper development of the population of dwarf birch. For Salix lapponum: a reduced level of values of nitrogen fractions (TN = 3.01–18.84 mg·dm–3; NH4 = 0.1–0.41 mg·dm–3), a reduced level of values of phosphorus fractions (TP = 0.09–0.44 mg·dm–3; PO4 = 0.1–0.44 mg·dm–3), part of ions (Ca = 4.39–19.63 mg·dm–3; Mg = 0.77–3.37 mg·dm–3), pH = 5.9–6.4, EC = 124–266 μS·cm–1 and DOC = 24.1–57.5 mg·dm–3. For the equally studied Salix myrtylloides, such conditions were met by: TP = 0.1–0.41 mg·dm–3; PO4 = 0.1–0.18 mg·dm–3, DOC = 27.5–50.9 mg·dm–3, pH = 5.3–5.94 andEC = 62.2–139.3 μS·cm–1.

Go to article

Authors and Affiliations

Artur Serafin
ORCID: ORCID
Magdalena Pogorzelec
Urszula Bronowicka-Mielniczuk
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Analysis of groundwater quality in the alluvial aquifer of the lower Soummam Valley, North-East of Algeria, was realised through the application of multivariate statistical methods: hierarchical cluster analysis (HCA) in Q and R modes, factorial correspondence analysis (FCA), and principal component analysis (PCA), to hydrochemical data from 51 groundwater samples, collected from 17 boreholes during periods of June, September 2016 and March 2017. The objectives of this approach are to characterise the water quality and to know the factors which govern its evolution by processes controlling its chemical composition. The Piper diagram shows two hydrochemical facies: calcium chloride and sodium bicarbonate. Statistical techniques HCA, PCA, and FCA reveal two groups of waters: the first (EC, Ca2+, Mg2+, Cl–, SO42– and NO3–) of evaporitic origin linked to the dissolution processes of limestone rocks, leaching of saliferous soils and anthropogenic processes, namely contamination wastewater and agricultural activity, as well marine intrusion; and the second group (Na+, K+, and HCO3–) of carbonated origin influenced by the dissolution of carbonate formations and the exchange of bases. The thermodynamic study has shown that all groundwater is undersaturated with respect to evaporitic minerals. On the other hand, it is supersaturated with respect to carbonate minerals, except for water from boreholes F9, F14, and F16, which possibly comes down to the lack of dissolution and arrival of these minerals. The results of this study clearly demonstrate the utility of multivariate statistical methods in the analysis of groundwater quality.
Go to article

Authors and Affiliations

Messaoud Ghodbane
1
ORCID: ORCID
Lahcen Benaabidate
2
ORCID: ORCID
Abderrahmane Boudoukha
3
ORCID: ORCID
Aissam Gaagai
4
ORCID: ORCID
Omar Adjissi
5
ORCID: ORCID
Warda Chaib
4
ORCID: ORCID
Hani Amir Aouissi
4
ORCID: ORCID

  1. University of Mohamed Boudiaf, Faculty of Technology, Laboratory of City, Environment, Society and Sustainable Development, 166 Ichebilia, 28000, M’sila, Algeria
  2. University of Sidi Mohammed Ben Abdellah, Faculty of Sciences and Techniques, Laboratory of Functional Ecology and Environment Engineering, Fez, Morocco
  3. University of Batna 2, Laboratory of Applied Research in Hydraulics, Batna, Algeria
  4. Scientific and Technical Research Center for Arid Areas (CRSTRA), Biskra, Algeria
  5. University of Mohamed Boudiaf, Faculty of Technology, M’sila, Algeria

This page uses 'cookies'. Learn more