Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper analyses the performance of Differential Head-Related Transfer Function (DHRTF), an alternative transfer function for headphone-based virtual sound source positioning within a horizontal plane. This experimental one-channel function is used to reduce processing and avoid timbre affection while preserving signal features important for sound localisation. The use of positioning algorithm employing the DHRTF is compared to two other common positioning methods: amplitude panning and HRTF processing. Results of theoretical comparison and quality assessment of the methods by subjective listening tests are presented. The tests focus on distinctive aspects of the positioning methods: spatial impression, timbre affection, and loudness fluctuations. The results show that the DHRTF positioning method is applicable with very promising performance; it avoids perceptible channel coloration that occurs within the HRTF method, and it delivers spatial impression more successfully than the simple amplitude panning method.

Go to article

Authors and Affiliations

Dominik Storek
Frantisek Rund
Petr Marsalek
Download PDF Download RIS Download Bibtex

Abstract

The head-related transfer function (HRTF) is dependent on the position of the sound source (both direction and distance) and is also affected by individual anatomical parameters. Individualized HRTFs have been shown to affect the perception of sound direction, but have not been considered in distance perception. This work aims to discover, by means of psychoacoustic experiments for a virtual reproduction system through a pair of in-ear headphones, the effect of individualized HRTF on auditory distance perception for a nearby sound source. The individualized HRTFs of six subjects and the non-individualized HRTFs of a mannequin at seven distances between 0.2 and 1.0 m and five lateral azimuths between 45X and 135X in the horizontal plane were processed with white noise to generate binaural signals. Further, the individualized and non-individualized HRTFs were used in the auditory distance perception experiments. Results of distance perception show that the variance of distance perception results among subjects is significant, the reason could be the stimuli are lack of dynamic cue and early reflections, or the auditory difference of distance perception among subjects. However, via the analyses of mean slope of perceptual distance and correlation between the perceptual and real distance, we find that the individualized HRTF cue has insignificant influence on distance perception.

Go to article

Authors and Affiliations

Guangzheng Yu
Liliang Wang
Download PDF Download RIS Download Bibtex

Abstract

The individual Head-Related Transfer Functions (HRTFs) typically show large left-right ear differences. This work evaluates HRTF left-right differences by means of the rms measure called the Root Mean Square Difference (RMSD). The RMSD was calculated for HRTFs measured with the participation of a group of 15 subjects in our laboratory, for the HRTFs taken from the LISTEN database and for the acoustic manikin. The results showed that the RMSD varies in relation to the frequency and as expected is small for more symmetrical HRTFs at low frequencies (0.3÷1 kHz). For higher frequency bands (1÷5 kHz and above 5 kHz), the left-right differences are higher as an effect of the complex filtering caused by anatomical shape of the head and the pinnae. Results obtained for the subjects and for data taken from the LISTEN database were similar, whereas different for the acoustic manikin. This means that measurements with the use of the manikin cannot be considered as perfect average representation of the results obtained for people. The method and results of this study may be useful in assessing the symmetry of the HRTFs, and further analysis and improvement of how to considered the HRTFs individualization and personalization algorithms.
Go to article

Authors and Affiliations

Maciej Jasiński
1
Jan Żera
1

  1. Warsaw University of Technology, Poland

This page uses 'cookies'. Learn more