Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Due to the widespread presence and harmfulness of heavy metals in the environment, scholars around the world have evaluated the exposure characteristics and health risks of heavy metals. To understand the status, hotspots, and development treads of heavy metal health risk assessment research, we used bibliometric analysis tools to conduct scientometric analysis of the literature related to the health risk assessment of heavy metals in the Web of Science database from 2000 to 2022. The analysis results indicate that research related to heavy metal health risk assessment is rapidly developing in both developed and developing countries. China’s significant international influence in this field is worth noting, as there are many publications and highly cited documents related to China. France and other developed countries also play an important role in this field due to their high centrality and strong bursts. The results of co-citation cluster analysis and keyword co-occurrence analysis indicate that in the past two decades, the primary research domains and hotspots of heavy metal health risk assessment have been the study of heavy metals in soil, dust, drinking water, vegetables, fish, and sediment. There is a specific focus on bioaccumulation, bioavailability, source apportionment, and spatial distribution of heavy metals. The main types of heavy metals studied are lead, cadmium, mercury, and zinc. The results of the bursts keywords analysis suggest that future research trends may focus more on the health risks of heavy metals in different functional areas of cities.
Go to article

Bibliography

  1. Alam, A., Chaudhry, M. N., Ahmad, S. R., Batool, A., Mahmood, A. & Al-Ghamdi, H. A. (2021). Application of EASEWASTE model for assessing environmental impacts from solid waste landfilling. Archives of Environmental Protection. 47(4), pp. 84–92, DOI:10.24425/aep.2021.139504
  2. Ali, H., Khan, E. & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 6730305. DOI: 10.1155/2019/6730305
  3. Antoniadis, V., Shaheen, S. M., Boersch, J., Frohne, T., Laing, G. D. & Rinklebe, J. (2017). Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. Journal of Environmental Management, 186, pp. 192–200. DOI: 10.1016/j.jenvman.2016.04.036
  4. Aoshima, K. (2012). Itai-itai disease: cadmium-induced renal tubular osteomalacia-current situations and future perspectives. Japanese Journal of Hygiene, 67, pp. 455–463. DOI: 10.1265/jjh.67.455
  5. Börner, K., Chen, C. & Boyack K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37, pp. 179–255. DOI:10.1002/aris.1440370106
  6. Cai, M., An, C. & Guy, C. (2021). A scientometric analysis and review of biogenic volatile organic compound emissions: Research hotspots, new frontiers, and environmental impliations. Renewable and Sustainable Energy Reviews, 149, 111317. DOI:10.1016/j.rser.2021.111317
  7. Cao, S., Duan, X., Zhao, X., Ma, J., Dong, T., Huang, N., Sun, C., He, B. & Wei, F. (2014). Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. Science of the Total Environment, 472, pp. 1001–1009. DOI:10.1016/j.scitotenv.2013.11.124
  8. Chen, C. (2005). The centrality of pivotal points in the evolution of scientific networks. In Proceedings of the 10th international conference on Intelligent user interfaces (IUI '05). Association for Computing Machinery, New York, USA, pp. 98–105. DOI:10.1145/1040830.1040859
  9. Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), pp. 359–377. DOI:10.1002/asi.20317
  10. Chen, C., Ibekwe-SanJuan F. & Hou J. (2010). The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis. Journal of the American Society for Information Science and Technology, 61(7), pp. 1386–1409. DOI:10.1002/asi.21309
  11. Chen, C., Hu, Z., Liu, S. & Tseng, H. (2012). Emerging trends in regenerative medicine: a scientometric analysis in CiteSpace. Expert Opinion on Biological Therapy, 12(5), pp. 593–608. DOI:10.1517/14712598.2012.674507
  12. Chen, C., Dubin, R. & Kim, M. C. (2014). Orphan drugs and rare diseases: a scientometric review (2000–2014). Expert Opinion on Orphan Drugs, 2(7), pp. 709–724. DOI:10.1517/21678707.2014.920251
  13. Chen, H., Zheng, C., Tu, C. & Zhu, Y. (1999). Heavy metal pollution in soils in China: status and countermeasures. Ambio, 28(2), pp. 130–134. DOI:10.1080/027868299304679
  14. Chen, H., Teng, Y., Lu, S., Wang, Y. & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512–513, pp. 143–153. DOI:10.1016/j.scitotenv.2015.01.025
  15. Chen, X., Li, F., Zhang, J., Liu, S., Ou, C., Yan, J. & Sun, T. (2021). Status, fuzzy integrated risk assessment, and hierarchical risk management of soil heavy metals across China: a systematic review. Science of the Total Environment, 785, 147180. DOI:10.1016/j.scitotenv.2021.147180
  16. Cui, Y., Mou, J. & Liu, Y. (2018). Knowledge mapping of social commerce research: a visual analysis using CiteSpace. Electronic Commerce Research, 18, pp. 837–868. DOI:10.1007/s10660-018-9288-9
  17. De Miguel, E., Iribarren, I., Chacón, E., Ordoñez, A. & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66, pp. 505–513. DOI: 0.1016/j.chemosphere.2006.05.065
  18. De Rosa, E., Montuori, P., Sarnacchiaro, P., Di Duca, F., Giovinetti, M. C., Provvisiero, D. P., Cavicchia, C. & Triassi, M. (2022). Spatiotemporal estimation of heavy metals pollution in the Mediterranean Sea from Volturno River, southern Italy: distribution, risk assessment and loads. Chemistry and Ecology, 38(4), pp. 327-355. DOI:10.1080/02757540.2022.2047950
  19. Dhital, S., Rupakheti, D., Rupakheti, M., Yin, X., Liu, Y., Mafiana, J. J., Alareqi, M. M., Mohamednour, H. & Zhang, B. (2022). A scientometric analysis of indoor air pollution research during 1990–2019. Journal of Environmental Management, 320, 115736. DOI:10.1016/j.jenvman.2022.115736
  20. Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69, pp. 131–152. DOI:10.1007/s11192-006-0144-7
  21. Ellegaard, O. & Wallin, J. A. (2015). The bibliometric analysis of scholarly production: How great is the impact?. Scientometrics, 105, pp. 1809–1831. DOI:10.1007/s11192-015-1645-z
  22. Eslami, H., Esmaeili, A., Razaeian, M., Salari, M., Hosseini, A. N., Mobini, M. & Barani, A. (2022). Potentially toxic metal concentration, spatial distribution, and health risk assessment in drinking groundwater resources of southeast Iran. Geoscience Frontiers, 13, 101276. DOI:10.1016/j.gsf.2021.101276
  23. European Parliament and Council of the European Union (2003). Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. Official Journal of the European Union, pp. 19–23.
  24. Fakhri, Y., Daraei, H., Hoseinvandtabar, S., Mehri, F., Mahmudiono, T. & Khaneghah, A. M. (2022). The concentration of the potentially toxic element (PTEs) in black tea (Camellia sinensis) consumed in Iran: a systematic review, meta-analysis, and probabilistic risk assessment study. International Journal of Environmental Analytical Chemistry, DOI:10.1080/03067319.2022.2118596.
  25. Fan, P., Lu, X., Yu, B., Fan, X., Wang, L., Lei, K., Yang, Y., Zuo, L. & Rinklebe, J. (2022). Spatial distribution, risk estimation and source apportionment of potentially toxic metal(loid)s in resuspended megacity street dust. Environment International, 160, 107073. DOI:10.1016/j.envint.2021.107073
  26. Fathabad, A. E., Shariatifar, N., Moazzen, M., Nazmara, S., Fakhri, Y., Alimohammadi, M., Azari, A. & Khaneghah, A. M. (2018). Determination of heavy metal content of processed fruit products from Tehran's market using ICP- OES: A risk assessment study. Food and Chemical Toxicology, 115, pp. 436–446. DOI:10.1016/j.fct.2018.03.044
  27. Fei, X., Lou, Z., Xiao, R., Lv, X. & Christakos, G. (2023). Contamination and health risk assessment of heavy metal pollution in soils developed from different soil parent materials. Exposure and Health, 15, pp. 395–408. DOI:10.1007/s12403-022-00498-w
  28. Ferreira-Baptista, L. & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 39, pp. 4501–4512. DOI:10.1016/j.atmosenv.2005.03.026
  29. Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), pp. 35–41. DOI: 10.2307/3033543
  30. Geng, Y., Zhu, R. & Maimaituerxun, M. (2022). Bibliometric review of carbon neutrality with CiteSpace: evolution, trends, and framework. Environmental Science and Pollution Research, 29, pp. 76668–76686. DOI:10.1007/s11356-022-23283-3
  31. Gong, Y., Zhao, D. & Wang, Q. (2018). An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Research, 147, pp. 440–460. DOI:10.1016/j.watres.2018.10.024
  32. Grochowska, J. K., Tandyrak, R., Augustyniak, R., Łopata, M., Popielarczyk, D. & Templin, T. (2021). How we can disrupt ecosystem of urban lakes – pollutants of bottom sediment in two shallow water bodies. Archives of Environmental Protection, 47(4), pp. 40–54, DOI:10.24425/aep.2021.139501
  33. Guo, K., Liu, Y.F., Zeng, C., Chen, Y.Y. & Wei, X.J. (2014). Global research on soil contamination from 1999 to 2012: A bibliometric analysis. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 64(5), pp. 377–391. DOI:10.1080/09064710.2014.913679
  34. Håkanson, L. (1980). An ecological risk index for aquatic pollution control: a sedimentological approach. Water Research, 14, pp. 975–1001. DOI:10.1016/0043-1354(80)90143-8
  35. Han, M., Yang, F. & Sun, H. (2021). A bibliometric and visualized analysis of research progress and frontiers on health effects caused by PM2.5. Environmental Science and Pollution Research, 28, pp. 30595–30612. DOI:10.1007/s11356-021-14086-z
  36. Hossini, H., Shafie, B., Niri, A. D., Nazari, M., Esfahlan, A. J., Ahmadpour, M., Nazmara, Z., Ahmadimanesh, M., Makhdoumi, P., Mirzaei N. & Hoseinzadeh, E. (2022). A comprehensive review on human health effects of chromium: insights on induced toxicity. Environmental Science and Pollution Research, 29, pp. 70686–70705. DOI:10.1007/s11356-022-22705-6
  37. Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun, Y. & Wu, J. (2012). Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmospheric Environment, 57, pp. 146–152. DOI:10.1016/j.atmosenv.2012.04.056
  38. Hu, X., Zhang, Y., Luo, J., Wang, T., Lian, H. & Ding, Z. (2011). Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environmental Pollution, 159, pp. 1215–1221. DOI:10.1016/j.envpol.2011.01.037
  39. Huang, J., Guo, S., Zeng, G., Li, F., Gu, Y., Shi, Y., Shi, L., Liu, W. & Peng, S. (2018). A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use. Environmental Pollution, 243, pp. 49–58. DOI:10.1016/j.envpol.2018.08.038
  40. Ivaneev, A. I., Brzhezinskiy, A. S., Karandashev, V. K., Ermolin, M. S. & Fedotov, P. S. (2023). Assessment of sources, environmental, ecological, and health risks of potentially toxic elements in urban dust of Moscow megacity, Russia. Chemosphere, 321, 138142. DOI:10.1016/j.chemosphere.2023.138142
  41. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B. & Beeregowda, K.N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), pp. 60–72. DOI:10.2478/intox-2014-0009
  42. Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68, pp. 167–182. DOI:10.1093/bmb/ldg032
  43. Ji, A., Wang, F., Luo, W., Yang, R., Chen, J. & Cai, T. (2011). Lead poisoning in China: a nightmare from industrialisation. Lancet, 377(9776), pp. 1474–1476. DOI:10.1016/S0140-6736(10)60623-X
  44. Jiang, Y., Chao, S., Liu, J., Yang, Y., Chen, Y., Zhang, A. & Cao, H. (2017). Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere, 168, pp. 1658–1668. DOI:10.1016/j.chemosphere.2016.11.088
  45. Khan, D. A., Qayyum, S., Saleem, S., Ansari, W. M. & Khan, F. A. (2010). Lead exposure and its adverse health effects among occupational worker's children. Toxicology and Industrial Health, 26(8), pp. 497 –504. DOI:10.1177/0748233710373085
  46. Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z. & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, pp. 686–692. DOI:10.1016/j.envpol.2007.06.056
  47. Kleinberg, J. (2003). Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery, 7, pp. 373–397. DOI:10.1023/A:1024940629314
  48. Komárek, M., Ettler, V., Chrastný, V. & Mihaljevič, M. (2008). Lead isotopes in environmental sciences: A review. Environment International, 34, pp. 562–577. DOI:10.1016/j.envint.2007.10.005
  49. Kumari, M. & Bhattacharya, T. (2023). A review on bioaccessibility and the associated health risks due to heavy metal pollution in coal mines: Content and trend analysis. Environmental Development, 46, 100859. DOI:10.1016/j.envdev.2023.100859
  50. Li, F., Yan, J., Wei, Y., Zeng, J., Wang, X., Chen, X., Zhang, C., Li, W., Chen, M. & Lv, G. (2020). PM2.5-bound heavy metals from the major cities in China: Spatiotemporal distribution, fuzzy exposure assessment and health risk management. Journal of Cleaner Production, 286, 124967. DOI:10.1016/j.jclepro.2020.124967
  51. Li, M., Wang, Y., Xue, H., Wu, L., Wang, Y., Wang, C., Gao, X., Li, Z., Zhang, X., Hasan, M., Alruqi, M., Bokhari, A. & Han, N. (2022). Scientometric analysis and scientific trends on microplastics research. Chemosphere, 304, 135337. DOI:10.1016/j.chemosphere.2022.135337
  52. Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z. & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468–469, pp. 843–853. DOI:10.1016/j.scitotenv.2013.08.090
  53. Liu, X., Song, Q., Tang, Y., Li, W., Xu, J., Wu, J., Wang, F. & Brookes, P. C. (2013). Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis. Science of the Total Environment, 463–464, pp. 530–540. DOI:10.1016/j.scitotenv.2013.06.064
  54. Liu, Z., Yin, Y., Liu, W. & Dunford, M. (2015). Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis. Scientometrics, 103, pp. 135–158. DOI:10.1007/s11192-014-1517-y
  55. López, L. A., Arce, G., Kronenberg, T. & Rodrigues, J. F. D. (2018). Trade from resource-rich countries avoids the existence of a global pollution haven hypothesis. Journal of Cleaner Production, 175, pp. 599–611. DOI:10.1016/j.jclepro.2017.12.056
  56. Lu, X., Zhang, X., Li, L.Y. & Chen, H. (2014). Assessment of metals pollution and health risk in dust from nursery schools in Xi’an, China. Environmental Research, 128, pp. 27–34. DOI:10.1016/j.envres.2013.11.007
  57. Luo, H., Wang, Q., Guan, Q., Ma, Y., Ni, F., Yang, E. & Zhang, J. (2022). Heavy metal pollution levels, source apportionment and risk assessment in dust storms in key cities in Northwest China. Journal of Hazardous Materials, 422, 126878. DOI:10.1016/j.jhazmat.2021.126878
  58. Mahmood, A. & Malik, R. N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arabian Journal of Chemistry, 7, pp. 91–99. DOI:10.1016/j.arabjc.2013.07.002
  59. Mahmudiono, T., Fakhri, Y., Adiban, M., Sarafraz, M. & Mohamadi, S. (2023). Concentration of potential toxic elements in canned tuna fish: systematic review and health risk assessment. International Journal of Environmental Health Research, DOI:10.1080/09603123.2023.2264205
  60. Masri, S., LeBrón, A. M. W., Logue, M. D., Valencia, E., Ruiz, A., Reyes, A. & Wu, J. (2021). Risk assessment of soil heavy metal contamination at the census tract level in the city of Santa Ana, CA: implications for health and environmental justice. Environmental Science: Processes & Impacts, 23, pp. 812–830. DOI:10.1039/d1em00007a
  61. Men, C., Liu, R., Xu, F., Wang, Q., Guo, L. & Shen, Z. (2018). Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Science of the Total Environment, 612, pp. 138–147. DOI:10.1016/j.scitotenv.2017.08.123
  62. Merigó, J. M. & Yang, J.-B. (2017). A bibliometric analysis of operations research and management science. Omega, 73, pp. 37–48. DOI:10.1016/j.omega.2016.12.004
  63. Muhammad, S., Shah, M.T. & Khan, S. (2011). Health risk assessment of heavy metals and their source apportionment in drinking water of Kohistan region, northern Pakistan. Microchemical Journal, 98, pp. 334–343. DOI:10.1016/j.microc.2011.03.003
  64. Peng, J., Zhang, S., Han, Y., Bate, B., Ke, H. & Chen, Y. (2022). Soil heavy metal pollution of industrial legacies in China and health risk assessment. Science of the Total Environment, 816, 151632. DOI:10.1016/j.scitotenv.2021.151632
  65. Qin, F., Li, J., Zhang, C., Zeng, G., Huang, D., Tan, X., Qin, D. & Tan, H. (2022). Biochar in the 21st century: a data-driven visualization of collaboration, frontier identification, and future trend. Science of the Total Environment, 818, 151774. DOI:10.1016/j.scitotenv.2021.151774
  66. Rai, P. K., Lee, S. S., Zhang, M., Tsang, Y. F. & Kim, K.-H. (2019). Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment International, 125, pp. 365–385. DOI:10.1016/j.envint.2019.01.067
  67. Sabe, M., Pillinger, T., Kaiser, S., Chen, C., Taipale, H., Tanskanen, A., Tiihonen, J., Leucht, S., Correll, C. U. & Solmi, M. (2022). Half a century of research on antipsychotics and schizophrenia: A scientometric study of hotspots, nodes, bursts, and trends. Neuroscience and Biobehavioral Reviews, 136, 104608. DOI:10.1016/j.neubiorev.2022.104608
  68. Saha, K. C. (2003). Review of arsenicosis in West Bengal, India—a clinical perspective. Critical Reviews in Environmental Science and Technology, 33(2), pp. 127–163. DOI:10.1080/10643380390814514
  69. Shahab, A., Hui, Z., Rad, S., Xiao, H., Siddique, J., Huang, L. L., Ullah, H., Rashid, A., Taha, M. R. & Zada, N. (2023). A comprehensive review on pollution status and associated health risk assessment of human exposure to selected heavy metals in road dust across different cities of the world. Environmental Geochemistry and Health, 45, pp. 585–606. DOI:10.1007/s10653-022-01255-3
  70. Shaheen, N., Irfan, N. M., Khan, I. N., Islam, S., Islam, M. S. & Ahmed, M. K. (2016). Presence of heavy metals in fruits and vegetables: Health risk implications in Bangladesh. Chemosphere, 152, pp. 431–438. DOI:10.1016/j.chemosphere.2016.02.060
  71. Shen, Z., Wu, H., Chen, Z., Hu, J., Pan, J., Kong, J. & Lin, T. (2022). The global research of artificial intelligence on prostate cancer: A 22-year bibliometric analysis. Frontiers in Oncology, 12, 843735. DOI:10.3389/fonc.2022.843735
  72. Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society and Information Science, 24, pp. 265–269. DOI:10.1002/asi.4630240406
  73. Smith, A. H., Lingas, E. O. & Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bulletin of the World Health Organization, 78, pp. 1093–1103. DOI:10.1146/annurev.publhealth.21.1.659
  74. Sultana, Z., Rehman, M. Y. A., Khan, H. K. & Malik, R. N. (2023). Health risk assessment associated with heavy metals through fractioned dust from coal and chromite mines in Pakistan. Environmental Geochemistry and Health, 45, pp. 1617–1633. DOI:10.1007/s10653-022-01285-x
  75. Trujillo-González, J. M., Torres-Mora, M. A., Keesstra, S., Brevik, E. C. & Jiménez-Ballesta, R. (2016). Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Science of the Total Environment, 553, pp. 636–642. DOI:10.1016/j.scitotenv.2016.02.101
  76. Urbano, T., Verzelloni, P., Malavolti, M., Sucato, S., Polledri, E., Agnoli, C., Sieri, S., Natalini, N., Marchesi, C., Fustinoni, S., Vinceti, M. & Filippini, T. (2023). Influence of dietary patterns on urinary excretion of cadmium in an Italian population: A cross-sectional study. Journal of Trace Elements in Medicine and Biology, 80, 127298. DOI:10.1016/j.jtemb.2023.127298
  77. USEPA (United States Environmental protection Agency). (1989). Risk Assessment Guidance for Superfund (RAGS): Volume I. Human Health Evaluation Manual (HHEM)–Part A, Baseline Risk Assessment. Office of Emergency and Remedial Response, Washington DC [EPA/540/1-89/002].
  78. USEPA (2008). Overview: Office of pollution prevention and Toxics laws and programs.
  79. Wang, J., Cai, Y., Yang, J. & Zhao, X. (2021). Research trends and frontiers on source appointment of soil heavy metal: a scientometric review (2000–2020). Environmental Science and Pollution Research, 28, pp. 52764–52779. DOI:10.1007/s11356-021-16151-z
  80. Wei, X., Gao, B., Wang, P., Zhou, H. & Lu, J. (2015). Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicology and Environmental Safety, 112, pp. 186–192. DOI:10.1016/j.ecoenv.2014.11.005
  81. WHO (2011). Guidelines for Drinking-water Quality, fourth ed. World Health Organization, Geneva.
  82. Wu, Q., Hu, W., Wang, H., Liu, P., Wang, X. & Huang, B. (2021). Spatial distribution, ecological risk and sources of heavy metals in soils from a typical economic development area, Southeastern China. Science of the Total Environment, 780, 146557. DOI:10.1016/j.scitotenv.2021.146557
  83. Xiao, F., Li, C., Sun, J. & Zhang, L. (2017). Knowledge domain and emerging trends in organic photovoltaic technology: A scientometric review based on CiteSpace analysis. Frontiers in Chemistry, 5, 67. DOI:10.3389/fchem.2017.00067
  84. Xiao, Q., Zong, Y. & Lu, S. (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety, 120, pp. 377–385. DOI:10.1016/j.ecoenv.2015.06.019
  85. Yan, J., Qu, Z., Li, F. & Li, H. (2021). Heavy metals in the water environment of Yangtze River Economic Belt: status, fuzzy environmental risk assessment and management. Urban Climate, 40, 100981. DOI:10.1016/j.uclim.2021.100981
  86. Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L. & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 642, pp. 690–700. DOI:10.1016/j.scitotenv.2018.06.068
  87. Yang, Y. & Meng, G. (2019). A bibliometric analysis of comparative research on the evolution of international and Chinese ecological footprint research hotspots and frontiers since 2000. Ecological Indicators, 102, pp. 650–665. DOI:10.1016/j.ecolind.2019.03.031
  88. Yi, Y., Yang, Z. & Zhang, S. (2011). Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution, 159, pp. 2575–2585. DOI:10.1016/j.envpol.2011.06.011
  89. Zhang, J., Jiang, L., Liu, Z., Li, Y., Liu, K., Fang, R., Li, H., Qu, Z., Liu, C. & Li, F. (2021). A bibliometric and visual analysis of indoor occupation environmental health risks: Development, hotspots and trend directions. Journal of Cleaner Production, 300, 126824. DOI:10.1016/j.jclepro.2021.126824
  90. Zheng, N., Liu, J., Wang, Q. & Liang, Z. (2010). Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Science of the Total Environment, 408, pp. 726–733. DOI:10.1016/j.scitotenv.2009.10.075
  91. Zhong, W., Zhang, Y., Wu, Z., Yang, R., Chen, X., Yang, J. & Zhu, L. (2018). Health risk assessment of heavy metals in freshwater fish in the central and eastern North China. Ecotoxicology and Environmental Safety, 157, pp. 343–349. DOI:10.1016/j.ecoenv.2018.03.048
Go to article

Authors and Affiliations

Yingsen Zhang
1
Xinwei Lu
1
Sijia Deng
1
Tong Zhu
1
Bo Yu
1

  1. School of Geography and Tourism, Shaanxi Normal University, China
Download PDF Download RIS Download Bibtex

Abstract

Uranium concentrations in groundwater taken from private drilled wells have been never determined in Poland, implying a lack of available data to quantify the human exposure to U through drinking water consumption, especially in rural areas influenced by mining activities. The main aim of the study was the assessment of human health risk related to the consumption of well waters containing U, collected from selected rural areas of the Lower Silesian region (Poland). The random daytime (RDT) sampling method was applied to the collection of well waters from three control study areas (CSA): Mniszków (CSA-A), Stara Kamienica/M. Kamienica/Kopaniec (CSA-B) and Kletno (CSA-C). The analyses of RDT samples were performed by validated method based on inductively coupled plasma mass spectrometry (ICP-MS). Uranium concentration ranges in well waters and the estimated geometric means for individual control study areas were: 0.005-1.03 μg/L and 0.052 μg/L (CSA-A), 0.027-10.6 μg/L and 0.40 μg/L (CSA-B), and 0.006-27.1 μg/L and 0.38 μg/L (CSA-C). The average and individual chronic daily intakes (CDI) of U by drinking water pathway (adults/children) were in the ranges of: 0.0017-0.013/0.0052-0.040 μg · kg-1 · day-1 and 0.0002-0.90/0.0005-2.71 μg · kg-1 · day-1. The average %TDI and ranges of individual %TDI (adults/children) were: 0.17%/0.52% and 0.02-3.4%/0.05-10.3% (CSA-A), 1.3%/4.0% and 0.09-35%/0.27-106% (CSA-B), and 1.3%/3.8% and 0.02-90%/0.06-271% (CSA-C). The estimated average CDI values of U through well water are significantly lower than the TDI (1 μg · kg-1 · day-1), while for individual CDI values the contribution to the TDI can reach even 90% (adults) and 271% (children), indicating essential human health risk for children consuming well water from private drilled wells located in CSA-B and CSA-C (5.3% of total number of samples collected).

Go to article

Authors and Affiliations

Sławomir Garboś
Dorota Święcicka
Download PDF Download RIS Download Bibtex

Abstract

Coastal areas face greater risk in terms of health and the environment. They are the most vulnerable to impacts resulting from climate change. Coastal areas with higher population density also have more environmental problems, such as natural disasters. Environmental health risks from chemicals and microbes continue threatening people living on small islands. Therefore, this study aims to: 1) conduct a chemical risk analysis of heavy metals Pb, Cr(VI), and Ni; 2) analyse the microbial risk posed by drinking water consumed daily by people on small islands. A method used to analyse the chemical risk of heavy metals was the environment health risk assessment (EHRA), whereas to analyse the microbial risk in small islands, the quantitative microbial risk assessment (QMRA) was used. The results showed that the concentration of heavy metals in drinking water was <0.0012 mg∙dm–3 for Pb, <0.01 mg∙dm–3 for Cr(VI), and <0.0019 mg∙dm–3 for Ni. The three heavy metals showed worrying results. Assessment and obtained risk quotient were less than one (RQ < 1) in all samples. Meanwhile, the microbial analysis found Escherichia coli, Acinetobacter calcoaceticus, Enterobacter sp ., and Citrobacter sp ., with risk characterised from low to high. Risk management is needed to control environmental health risks posed by heavy metals and the microbiological characteristics of drinking water on the small islands of the Spermonde Archipelago.
Go to article

Authors and Affiliations

Agus B. Birawida
1
ORCID: ORCID
Anwar Daud
1
ORCID: ORCID
Erniwati Ibrahim
1
ORCID: ORCID
Healthy Hidayanty
2
ORCID: ORCID
Nurlia Sila
1
ORCID: ORCID
Maming Maming
3
ORCID: ORCID
Muhammad Nur
4
ORCID: ORCID
Ain Khaer
5
ORCID: ORCID
Andi I. Arundhana
6
ORCID: ORCID
Arsunan Arsin
7
ORCID: ORCID

  1. Hasanuddin University, Department of Environmental Health, Jl. Perintis Kemerdekaan Km 10, Makassar, South Sulawesi, 90245, Indonesia
  2. Hasanuddin University, Department of Nutrition, Jl. Perintis Kemerdekaan Km 10, Makassar, South Sulawesi, 90245, Indonesia
  3. Hasanuddin University, Department of Chemistry, Jl. Perintis Kemerdekaan Km 10, Makassar, South Sulawesi, 90245, Indonesia
  4. Hasanuddin University, Department of Mathematics, Jl. Perintis Kemerdekaan Km 10, Makassar, South Sulawesi, 90245, Indonesia
  5. Health Polytechnic, Department of Environmental Health, Jl.Wijaya Kusuma 1 No.2, Makasssar, South Sulawesi, 90222, Indonesia
  6. The University of Sidney, Faculty of Medicine and Health, Science Rd, Camperdown NSW 2050, Australia
  7. Hasanuddin University, Department of Epidemiology, Jl. Perintis Kemerdekaan Km 10, Makassar, South Sulawesi, 90245, Indonesia

This page uses 'cookies'. Learn more