Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The stability of longwall mining is one of the most important and the most difficult aspects of underground coal mining. The loss of longwall stability can threaten lives, disrupt the continuity of the mining operations, and it requires significant materials and labour costs associated with replacing the damages. In fact, longwall mining stability is affected by many factors combined. Each case of longwall mining has its own unique and complex geological and mining conditions. Therefore, any case study of longwall stability requires an individual analysis. In Poland, longwall mining has been applied in underground coal mining for years. The stability of the longwall working is often examined using an empirical method. A regular longwall mining panel (F3) operation was designed and conducted at the Borynia-Zofiówka-Jastrzębie (BZJ) coal mine. During its advancement, roof failures were observed, causing a stoppage. This paper aims to identify and determine the mechanisms of these failures that occurred in the F3 longwall. A numerical model was performed using the finite difference method - code FLAC2D, representing the exact geological and mining conditions of the F3 longwall working. Major factors that influenced the stability of the F3 longwall were taken into account. Based on the obtained results from numerical analysis and the in-situ observations, the stability of the F3 longwall was discussed and evaluated. Consequently, recommended practical actions regarding roof control were put forward for continued operation in the F3 longwall panel.
Go to article

Authors and Affiliations

Phu Minh Vuong Nguyen
1
ORCID: ORCID
Sylwester Rajwa
1
ORCID: ORCID
Marek Płonka
1
ORCID: ORCID
Waldemar Stachura
2

  1. Central Mining Institute (GIG), 1 Gwarków Sq., 40-166 Katowice, Poland
  2. Jastrzębska Spółka Węglowa SA, Poland
Download PDF Download RIS Download Bibtex

Abstract

In-situ observation of the transformation behavior of acicular ferrite in high-strength low-alloy steel using confocal laser scanning microscopy was discussed in terms of nucleation and growth. It is found that acicular ferrite nucleated at dislocations and slip bands in deformed austenite grains introduced by hot deformation in the non-recrystallization austenite region, and then proceeded to grow into an austenite grain boundary. According to an ex-situ EBSD analysis, acicular ferrite had an irregular shape morphology, finer grains with sub-grain boundaries, and higher strain values than those of polygonal ferrite. The fraction of acicular ferrite was affected by the deformation condition and increased with increasing the amount of hot deformation in the non-recrystallization austenite region.
Go to article

Authors and Affiliations

Sang-In Lee
1
ORCID: ORCID
Seung-Hyeok Shin
1
ORCID: ORCID
Hyeonwoo Park
2
ORCID: ORCID
Hansoo Kim
2
ORCID: ORCID
Joonho Lee
2
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering, Seoul, 01811, Republic of Korea
  2. Korea University, Department of Materials Science and Engineering, Seoul, 02841, Republic of Korea

This page uses 'cookies'. Learn more