Search results

Filters

  • Journals
  • Autorzy
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

“The influenza virus behaves just as it seems to have done for five hundred or a thousand years, and we are no more capable of stopping epidemics or pandemics than our ancestors were,” wrote Charles Cockburn from the World Health Organization back in 1973. Is his remark still just as apt today?

Go to article

Authors and Affiliations

Lidia B. Brydak
Download PDF Download RIS Download Bibtex

Abstract

We attempt to apply a New Keynesian open economy model to simulate the economic consequences of influenza epidemic in Poland and measure the output loss (indirect cost) related to this disease. We introduce a negative health shock on the supply side of the economy and demonstrate that such a shock – implemented as a reduction in labour utilisation under unchanged labour cost – is not equivalent to negative labour supply shock. As expectational effects may hypothetically play a significant role in determining the economic cost of influenza, we attempt to endogenise the mechanism of epidemic in the model for the rational expectations solution algorithm to take account for the possibility of epidemic. This attempt has failed for the standard SIR model of epidemic and for the standard Blanchard-Kahn-like local solution methods, as the SIR block is only consistent with Blanchard-Kahn conditions under herd immunity of the population. In the deterministic simulation with the number of infected given exogenously, the output loss resulting from influenza-related presenteeism and absenteeism was estimated at 0.004% of the steady state level on average in the period 2000‒2013. The simulated indirect cost in the New Keynesian model has turned out to be lower than the estimates that one could possibly obtain using the human capital approach. The reason for this discrepancy is the demand-oriented construction of the New Keynesian framework, and we treat this result as closer in notion to what the friction cost approach might suggest.

Go to article

Authors and Affiliations

Andrzej Torój
Download PDF Download RIS Download Bibtex

Abstract

In order to understand infection of avian influenza A virus (AIV) and canine distemper virus (CDV) in the Siberian Tiger in Northeast China, 75 Siberian Tiger serum samples from three cap- tive facilities in northeastern China were collected. AIV and CDV antibody surveillance was test- ed by using hemagglutination inhibition and serum neutralization methods. The results showed that the seroprevalence of H5 AIV, H9 AIV and CDV was respectively 9.33% (7/75), 61.33% (46/75) and 16% (12/75). In the 1<years <2 and > 5 year-old group, the seroprevalence of the H9 AIV was 24% and 80% (P < 0.01), and the CDV seroprevalence was 6% and 36% (P < 0.01), respectively. It was demonstrated that 3 (4%) out of 75 serum samples were AIV+CDV seropos- itive, with 2.67% (2/75) in H9+AIV and 1.33% (1/75) in H5+H9+AIV. To our knowledge, this is the first report of AIV and CDV seroprevalence in Siberian Tigers in China, which will provide base-line data for the control of AIV and CDV infection in Siberian Tigers in China.

Go to article

Authors and Affiliations

K. Wang
H. Wang
N. Feng
Y. Zhao
Y. Gao
G. Hu
X. Xia
Download PDF Download RIS Download Bibtex

Abstract

Illnesses with aerosol mode of transmission dominate in the structure of infectious diseases. Influenced by natural, social and biological factors, epidemiological characteristics of the infectious diseases change, that’s why the objective of this research was to determine modern peculiar features of the epide-miological situation regarding viral infections with aerosol transmission in Ukraine. Influenza incidence ranged from 31.14‒184.45 per 100 thousand people, other acute respiratory viral infections from 13685.24‒ 18382.5. Epidemic process of measles was characterized by increasing incidence in 2018 and 2019. In Ukraine, there is a tendency to reduce the incidence of rubella and mumps (р <0.05). The positive effect of immunization on the incidence of mumps and rubella has been established. Vaccination against measles cannot be considered as evidence of immunity against measles. The demographic situation in Ukraine may indirectly influence the intensity of the epidemic situation of viral infections with aerosol transmission.
Go to article

Bibliography

1. Naz R., Gul A., Urooj A., Amin S., Fatima Z.: Etiology of acute viral respiratory infections common in Pakistan: A review. Rev Med Virol. 2019; 29 (2): e2024. doi: 10.1002/rmv.2024
2. Somes M.P., Turner R.M., Dwyer L.J., Newall A.T.: Estimating the annual attack rate of seasonal influenza among unvaccinated individuals: A systematic review and meta-analysis. 2018; 36 (23): 3199–3207. doi: 10.1016/j.vaccine.2018.04.063
3. Obando-Pacheco Р., Justicia-Grande J., Rivero-Calle I., et al.: Respiratory Syncytial Virus Seasonality: A Global Overview. J Infect Dis. 2018; 217 (9): 1356–1364. doi: 10.1093/infdis/jiy056
4. Shafagati N., Williams J.: Human metapneumovirus ‒ what we know now. 2018; 7: 135. doi: 10.12688/frch.12625.1
5. Ison M.G., Hayden R.T.: Microbiol Spectr. 2016; 4 (4). doi: 10.1128/microbiolspec
6. Singh S., Singh N., Ahirwar R., Sagar S.K., Mondal P.R.: Impact of COVID-19 Pandemic on Mental Health of General Population and University Students Across the World: A Review. Online J Health Allied Scs. 2021; 20 (2): 2. Available at URL: https://www.ojhas.org/issue78/2021-2-2.html
7. Guo Y.R., Cao Q.D., Hong Z.S., et al.: The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak — an update on the status. Mil Med Res. 2020; 7 (1): doi: 10.1186/ s40779-020-00240-0
8. Rota A., Moss W.J., Takeda M., et al.: Measles. Nat Rev Dis Primers. 2016; 2: 16049. doi: 10.1038/nrdp.2016.49
9. Lambert N., Strebel P., Orenstein W., et al.: Rubella. Lancet. 2015; 385 (9984): 2297–2307. doi: 10.1016/S0140-6736(14)60539-0
10. Su S.B., Chang H.L., Chen A.K.: Current Status of Mumps Virus Infection: Epidemiology, Pathogenesis, and Vaccine. Int J Environ Res Public Health. 2020; 17 (5): doi: 10.3390/ijerph17051686
11. Podavalenko A.P., Zadorozhna V.I., Petrenko T.Ie, Podavalenko O.V.: Socio-hygienic monitoring in the system of epidemiological surveillance of airborne infections. Ukrainskyi medychnyi chasopys. 2016; 1 (111): 98‒101.
12. Buchan A., Hottes T.S., Rosella L.C., et al.: Contribution of influenza viruses to medically attended acute respiratory illnesses in children in high-income countries: a meta-analysis. Influenza Other Respir Viruses. 2016; 10 (6): 444–454. doi: 10.1111/irv.12400
13. Nair H., BrooksA., Katz M., et al.: Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis. Lancet. 2011; 378 (9807): 1917–1930. doi: 10.1016/S0140-6736(11)61051-9
14. Principi N., Esposito S.: Severe influenza in children: incidence and risk factors. Expert Rev Anti Infect Ther. 2016; 14 (10): 961–968. doi: 10.1080/14787210.2016.1227701
15. Malysh N.G., Matsiuk M.V., Senchenko A.V.: Modern features of the epidemic process of viral infections with aerosol transmission in Sumy oblast. Eastern Ukrainian Medical Journal. 2021; 9 (1): 115–123.
16. Lapić I., Rogić D., Šegulja D., Kralik Oguić S., Knežević J.: The reliability of SARS-CoV-2 IgG antibody testing — a pilot study in asymptomatic health care workers in a Croatian university hospital. Croat Med 2020; 61: 485–490. doi: 10.3325/cmj.2020.61.485
17. Moss W.J.: Lancet. 2017; 390 (10111): 2490–2502. doi: 10.1016/S0140-6736(17)3
18. Javelle E., Colson P., Parola P., Raoult D.: Measles, the need for a paradigm shift. Eur J Epidemiol. 2019; 34 (10): 897–915. doi: 10.1007/s10654-019-00569-4
19. Metz J.A., Finn A.: Influenza and humidity — Why a bit more damp may be good for you! J Infect. 2015; 71 (1): S54–58. doi: 10.1016/j.jinf.2015.04.013
20. Kostinov M.P., Shmitko A.D., Bocharova I.I., et al.: The level of IgG antibodies to the measles virus in the umbilical cord blood of newborns, taking into account the age of the mothers. Epidemiologiya i infektsionnyie bolezni. 2014; 3: 30–34.
21. Tyor W., Harrison T.: Mumps and rubella. Handb Clin Neurol. 2014; 123: 591–600.
22. Bankamp B., Hickman C., Icenogle J.P., Rota P.A.: Successes and challenges for preventing measles, mumps and rubella by vaccination. Curr Opin Virol. 2019; 34: 110–116. doi: 10.1016/j.coviro.2019.01.002
23. Lewnard A., Grad Y.H.: Vaccine waning and mumps re-emergence in the United States. Sci Transl Med. 2018; 10 (433): eaаo5945. doi: 10.1126/scitranslmed.аao5945
24. Marlow A., Marin M., Moore K., Patel M.: CDC guidance for use of a third dose of MMR vaccine during outbreaks. J. Public Health Manag Pract. 2020; 26: 109–115.
25. Rubin S., Eckhaus M., Rennick L.J., Connor B.G.G., Duprex W.P.: Molecular biology, pathogenesis and pathology of mumps virus. J Pathol. 2015; 235 (2): 242–252. doi: 10.1002/path.4445
26. Lambert N., Strebel, Orenstein W., et al.: Rubella. Lancet. 2015; 385 (9984): 2297–2307. doi: 10.1016/ S0140-6736(14)60539-0
27. Williams G.A., Bacci S., Shadwick R., et al.: Measles among migrants in the European Union and the European Economic Area. Scand J Public Health. 2016; 44 (1): 6–13. doi: 10.1177/1403494815610182
Go to article

Authors and Affiliations

Nina Malysh
1
Alla Podavalenko
2
Victoriya Zadorozhna
3
Svetlana Biryukova
4

  1. Department of Infectious Diseases with Epidemiology, Sumy State University, Sumy, Ukraine
  2. Department of Hygiene, Epidemiology and Occupational Diseases, Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine
  3. SI «Institute of Epidemiology and Infectious Diseases named after L.V. Gromashevsky National Academy of Medical Sciences of Ukraine», Kyiv, Ukraine
  4. Department of Microbiology, Bacteriology, Virology, Clinical and Laboratory Immunology, Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine

This page uses 'cookies'. Learn more