Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The AISI 430 stainless steel with ferritic structure is a low cost material for replacing austenitic stainless steel because of its higher yield strength, higher ductility and also better polarisation resistance in harsh environments. The applications of AISI 430 stainless steel are limited due to insignificant ductility and some undesirable changes of magnetic properties of its weld area with different microstructures. In this research, a study has been done to explore the effects of parameters of laser welding process, namely, welding speed, laser lamping current, and pulse duration, on the coercivity of laser welded AISI 430 stainless steel. Vibrating sample magnetometery has been used used to measure the values of magnetic properties. Observation of microstructural changes and also texture analysis were implemented in order to elucidate the change mechanism of magnetic properties in the welded sections. The results indicated that the laser welded samples undergo a considerable change in magnetic properties. These changes were attributed to the significant grain growth which these grains are ideally oriented in the easiest direction of magnetization and also formation of some non-magnetic phases. The main effects of the above-mentioned factors and the interaction effects with other factors were evaluated quantitatively. The analysis considered the effect of lamping current (175-200 A), pulse duration (10-20 ms) and travel speed (2-10 mm/min) on the coercivity of laser welded samples.

Go to article

Authors and Affiliations

H. Mostaan
M. Rafiei
Download PDF Download RIS Download Bibtex

Abstract

In the present study, Ti6Al4V titanium alloy plates were joined using robotic laser welding method. Pre- and post-weld heat treatments were applied to laser welded joints. After welding stress relieving, solution heat treatment and ageing were also applied to preheated laser welded samples. Effects of heat treatment conditions on microstructural characteristics and mechanical properties of robotic laser welded joints were studied. Aged samples were found to be made of coarsened grains compared to microstructures of non-aged samples. There were increases in ductility and impact toughness of samples applied to ageing increased, while hardness and tensile strength of non-aged samples were higher. The highest value for tensile strength and for impact toughness in welded samples have been identified as 840 MPa and 27 J, respectively. Fractures in tensile test samples and base metal impact test samples took place in the form of ductile fracture, while laser welded impact test samples had fractures in the mode of intergranular fractures with either a quasi-cleavage type or tear ridges. EDS analysis carried out for all heat treatment conditions and welding parameters demonstrated that major element losses were not observed in base metal, HAZ and weld metal.

Go to article

Authors and Affiliations

C. Köse
E. Karaca
Download PDF Download RIS Download Bibtex

Abstract

Plates of AZ91 cast magnesium alloy with a thickness of 3.5 mm were butt-welded using a laser power of 2000 W and helium as the shielding gas. The effect of the welding speed on the weld cross-sectional geometry and porosity was determined by microscopic analysis. It was found that to avoid the formation of macropores, welding should be carried out at a speed of 3.4 m/min or higher. Non-equilibrium solidification of the laser-melted metal causes fragmentation of the weld microstructure. Joints that were welded at optimal laser processing parameters were subjected to structural observations using optical and scanning microscopy and to mechanical tests. The mechanical properties were determined through Vickers hardness measurements in the joint cross-section and through tensile testing. The results indicate that the hardness in the fusion zone was about 20 HV (30%) higher than that of the base material. The weld proved to be a mechanically stable part of the joint; all the tensile-tested specimens fractured outside the fusion zone.

Go to article

Authors and Affiliations

A. Dziadoń
ORCID: ORCID
E. Musiał
Download PDF Download RIS Download Bibtex

Abstract

Plates of AZ91 magnesium alloy were butt-welded using a CO2 laser. The non-equilibrium solidification of the laser-melted metal caused fragmentation of the weld microstructure as well as the supersaturation of a solid solution of aluminium in magnesium, which enabled the T5 ageing of the weld. The weld proved to be a mechanically stable part of the joint; all the tensile-tested specimens, both as-welded and post-weld T5 aged, fractured outside it. During the ageing of the supersaturated joint, which involved heat treating it to the T6 condition, the weld was the region where discontinuous precipitation was observed and this was the location of fracture in the tensile specimens. Thus, the strength properties of welded, supersaturated and aged AZ91 were much worse than when the non-welded material was T6 tempered.
Go to article

Authors and Affiliations

A. Dziadoń
1
ORCID: ORCID
E. Musiał
1

  1. Kielce University of Technology, Metals Science and Materials Technologies, 7 Tysiąclecia Państwa Polskiego Av., 25-314, Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

The automated laser welding process of 2.0 mm thick sheets of AISI 304 stainless steel was investigated. The disk laser with a beam spot diameter of 200 μm was used for bead-on-plate and next for autogenous butt joints welding. The influence of basic welding parameters such as laser power, welding speed, and focal spot position on fusion zone configuration, quality of joints, microstructure changes, and microhardness distribution across the joints were analysed and presented in this paper. The results have shown that stiffening of the 2.0 mm thick sheets is crucial for providing high quality and reproducibility of butt joint in a case of AISI 304 stainless steel due to relatively low thermal conductivity and simultaneously high thermal expansion. Relevant drop of microhardness in the weld zone was observed. The mean value of microhardness of the base metal was 230 HV0.1, while the microhardness in fusion zone of the test welds was ranged from 130 to 170 HV0.1. Additionally the microstructure changes in the weld metal and also in the heat affected zone of test joints is described.

Go to article

Authors and Affiliations

A. Lisiecki
A. Kurc-Lisiecka
Download PDF Download RIS Download Bibtex

Abstract

Over the years laser welding has evolved as a fabrication process capable of overcoming the limitations of conventional joining methodologies. It facilitates the welding of diverse range of materials like metals, non-metals, polymers etc. Laser transmission welding is a technique employed for fabricating intricate shapes/contours in polymers with better precision compared to the other conventional processes. Nylon6, a synthetic semi-crystalline polymer is utilized as an engineering thermoplastic due to its high strength and temperature resistant properties. In the earlier researches, various welding techniques were employed for the fabrication of polymers and metals keeping the laser beam stagnant, and much emphasis was given only to temperature distribution along the different axes and limited attention was given to residual stress analysis. Therefore, in this research work, a three-dimensional time-dependent model using a moving laser beam is used to fabricate unreinforced Nylon6 specimens.

Go to article

Authors and Affiliations

Santosh Kumar Gupta
Pradip Kumar Pal
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an investigation into effect of nitrogen content of shielding gas mixture on weld geometry, microstructure and hardness of pulsed laser welded 2205 duplex stainless steel. Full penetration autogenous welding was performed on 2 mm thick plates using a low power pulsed Nd: YAG laser. light and scanning electron microscopy were used to study the resulting microstructures. It is observed that 2 mm full penetrated joint decreases to 1.8 mm by dominating nitrogen in argon-nitrogen mixture. Different morphologies of austenite phase as well as an increase of 8% of its content can be observed in pure nitrogen shielded welds. Average weld grain size in sample which is welded in nitrogen atmosphere stands at approximately 41 μm which is smaller than that of argon atmosphere which is about 51 μm. Micro-hardness test reveals that hardness values increase from 280 HV in base metal to 307 HV in weld center line and the shielding gas mixture does not significantly influence the weld hardness.

Go to article

Authors and Affiliations

E. Hajibaba Gozarganji
A. Farnia
M. Ebrahimnia
Download PDF Download RIS Download Bibtex

Abstract

Paper presents results of laser welding of dissimilar joints. Flange pipe joints of austenitic TP347-HFG and low carbon S235JR steels were performed. Possibility of laser girth welding of dissimilar joints was presented. Welding of dissimilar materials are complex phenomena, chemical composition of chromium and nickel base austenitic steel with carbon amount of 0.07%, comparing to low carbon steel with trace amount of chromium, nickel and with 0.17% of carbon are different, and affect on welding result. Amount of carbon and chromium have great effect on steel phase transformation and crystallization process, which affect on material hardenability and strength characteristic. In conventional GMA welding methods solidification process of different metals is controlled by use of a selected filler material, for creating buffer zone. The main advantages of laser welding over other methods is process without an additional material, nevertheless some application may require its use. Laser welding with additional material combines advantages of both methods. To carry out weld with high strength characteristic, without welding defects, selecting chemical composition of filler wire are required. Welding parameters was obtained using numerical simulation based on Finite Element Method (FEM). Joint properties was investigated using hardness test. Metallographic analysis of obtained weld was carried out using optical microscopy and energy dispersive spectroscopy (EDS) analysis.

Go to article

Authors and Affiliations

H. Danielewski
A. Skrzypczyk
K. Mulczyk
A. Zrak
Download PDF Download RIS Download Bibtex

Abstract

This paper studied the effect of laser welding technology on dissimilar metal welding joints of TA15 titanium alloy and Inconel 718 nickel-based alloy. The research results indicate that the laser welding of TA15 titanium alloy and Inconel 718 nickel-based alloy directly was difficult to form well, which due to the intermetallic compounds caused the joint brittle. When the pure Cu foil was used as the filling layer, the quality of the welding joints can be improved effectively. The experimental results also indicate that there were brittle intermetallic-compounds in the laser welding seam, and the laser power had an important influence on the performance and mechanical properties of the dissimilar metal joint. The maximum average tensile strength of the welding joint of 2300 W was increased to 252.32 MPa. Scanning electron microscope(SEM) results show that the fracture morphology was river pattern, a typical morphological of cleavage fracture, and the mode was brittle fracture.
Go to article

Authors and Affiliations

Qi An
1 2
ORCID: ORCID
Dongting Wu
1
ORCID: ORCID
Peng Liu
3
ORCID: ORCID
Yong Zou
4
ORCID: ORCID

  1. Shandong University, Key Laboratory of Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Jinan, 250061, China
  2. Shandong University, School of Materials Science and Engineering, Jinan, 250061, China
  3. Shandong Jianzhu University, School of Materials Science and Engineering, Jinan, 250101, China
  4. Shandong University, Jinan Shandong Engineering & Technology Research Center for Modern Welding, 250061, China
Download PDF Download RIS Download Bibtex

Abstract

To improve the welding performance of aluminum alloys, a thermal source model of an irregular weld seam was established. COMSOL software was used for numerical simulation of the weld seam geometry effect on the temperature and stress fields in laser welding, which results were experimentally validated. The results show that the ellipsoidal laser welding melted micropool exhibited quasi-steady-state temperature field characteristics. The temperature gradient and thermal stress showed an increase followed by a decline. The temperature fluctuation amplitude of the square-tooth-shaped weld seam exceeded that of the arc-toothshaped one. The temperature evolution of the broken line tooth-shaped weld seam showed a slightly increasing trend, except for the inflection point. The experimental average tensile strength of the weld seam was the highest, reaching about 210 MPa, i.e., roughly 85% of the base material (245 MPa), which coincided with the COMSOL-based temperature field simulation results. With increasing deformation amplitude and transition radius, the maximum tensile force, tensile strength, and elongation at fracture showed an increasing trend. However, the deformation amplitude should be below a certain limit because its increase elongates the welding path and reduces the distance between weld seams, resulting in serious heat accumulation. The tensile fracture morphology of the 6063-T6 base material was curved shear, with shallow toughness pits, small tearing edges at the edges, and small granular objects, indicating small plastic deformation during the fracture process. The tensile fracture of the welded part spanned the weld seam and the base material, and the fracture occurred along the tangent direction of the weld seam. The fracture surface was smooth, the tearing edges at the edge of the toughness pit shifted along the weld seam direction, forming many co-directional slip bands, with highly pronounced plastic deformation.
Go to article

Authors and Affiliations

Aiyong Cui
1
ORCID: ORCID
Haodong Liu
1
ORCID: ORCID
Shaodong Gao
2
ORCID: ORCID
Huakai Wei
1
ORCID: ORCID
Jialei Zhao
2
ORCID: ORCID

  1. Naval Aeronautical University, Qingdao, 266041, China
  2. Liaoning University of Technology, Jinzhou, 121001, China

This page uses 'cookies'. Learn more