Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to examine the relationship between tinnitus pitch and maximum hearing loss, frequency range of hearing loss, and the edge frequency of the audiogram, as well as, to analyze tinnitus loudness at tinnitus frequency and normal hearing frequency.

The study included 212 patients, aged between 21 to 75 years (mean age of 54.4 ± 13.5 years) with chronic subjective tinnitus and sensorineural hearing loss. For the statistical data analysis we used Chisquare test and Fisher’s exact test with level of significance p < 0:05.

Tinnitus pitch corresponding to the frequency range of hearing loss, maximum hearing loss and the edge frequency was found in 70.8%, 37.3%, and 16.5% of the patients, respectively. The majority of patients had tinnitus pitch from 3000 to 8000 Hz corresponding to the range of hearing loss (p < 0:001). The mean tinnitus pitch was 3545 Hz ± 2482. The majority (66%) of patients had tinnitus loudness 4–7 dB SL. The mean sensation level at tinnitus frequency was 4.9 dB SL ± 1.9, and 13 dB SL ± 2.9 at normal hearing frequency.

Tinnitus pitch corresponded to the frequency range of hearing loss in majority of patients. There was no relationship between tinnitus pitch and the edge frequency of the audiogram. Loudness matching outside the tinnitus frequency showed higher sensation level than loudness matching at tinnitus frequency.

Go to article

Authors and Affiliations

Lidija Ristovska
Zora Jachova
Vase Stojcheska
Download PDF Download RIS Download Bibtex

Abstract

The present study was conducted in the lobbies of 16 Taiwanese urban hospitals to establish what contributes to the degree of noisiness experienced by patients and those accompanying them. Noise level measurements were then conducted by 15 min equivalent sound pressure levels (LAeq, 15m, dB) during daytime hours. The average LAeq itself was found to be poorly related to perceived noisiness. Levels variations were better correlated, more continual noise may actually be perceived as noisier. According to the findings of a multiple linear stepwise regression model (r = 0.91, R2 = 0.83), the 3 independent variables shown to have the largest effects on perceived noisiness were 1) 1/(L5 − L95), 2) effective duration of the normalized autocorrelation function (τe, h), of all LAeq, 15m over 9–17, and 3) percentile loudness, N5, 15m. These results resemble previous studies that had assumed that a larger fluctuation of noise level corresponds to less annoyance experienced for mixed traffic noise studied in a laboratory situation. As an advanced approach, for hospital noise that consisted of 12 audible noise events, subjective noisiness were evaluated by the noise time structure analyzed by autocorrelation with loudness and levels variation.
Go to article

Authors and Affiliations

Chiung-Yao Chen
Download PDF Download RIS Download Bibtex

Abstract

The main goal of this research study is focused on creating a method for loudness scaling based on categorical perception. Its main features, such as: way of testing, calibration procedure for securing reliable results, employing natural test stimuli, etc., are described in the paper and assessed against a procedure that uses 1/2-octave bands of noise (LGOB) for the loudness growth estimation. The Mann-Whitney U-test is employed to check whether the proposed method is statistically equivalent to LGOB. It is shown that loudness functions obtained in both methods are similar in the statistical context. Moreover, the band-filtered musical instrument signals are experienced as more pleasant than the narrow-band noise stimuli and the proposed test is performed in a shorter time. The method proposed may be incorporated into fitting hearing strategies or used for checking individual loudness growth functions and adapting them to the comfort level settings while listening to music.

Go to article

Authors and Affiliations

Bożena Kostek
Piotr Odya
Piotr Suchomski
Download PDF Download RIS Download Bibtex

Abstract

The present study was carried out to determine whether recorded musical tones played at various pitches on a clarinet, a flute, an oboe, and a trumpet are perceived as being equal in loudness when presented to listeners at the same A-weighted level. This psychophysical investigation showed systematic effects of both instrument type and pitch that could be related to spectral properties of the sounds under consideration. Level adjustments that were needed to equalize loudness well exceeded typical values of JNDs for signal level, thus confirming the insufficiency of A-weighting as a loudness predictor for musical sounds. Consequently, the use of elaborate computational prediction is stressed, in view of the necessity for thorough investigation of factors affecting the perception of loudness of musical sounds.

Go to article

Authors and Affiliations

Despina Klonari
Konstantinos Pastiadis
Georgios Papadelis
George Papanikolaou
Download PDF Download RIS Download Bibtex

Abstract

In the present paper, an analysis uf lower bound estimation of the load carrying capacity of structures with intermediate stiffeners is undertaken. Thin-walled structures with intermediate stiffeners in the elastic range, being under axial compression and a bending moment, are examined on the basis of the Byskov and Hutchinson's method [4] and the co-operation between all the walls of the considered structures is shown. The structures are assumed to be simply supported at the ends. The study is based on the numerical method 01· the transition matrix using Godunov's orthogonalization [2]. Instead of the finite strip method, the exact transition matrix method is used in this case. In the presented method for lower bound estimation uf the load carrying capacity of structures, it is postulated that the reduced local critical load should be determined taking into account the global pre-critical bending within the first order non-linear approximation to the theory of the interactive buckling of the structure. The results are compared to those obtained from the design code and the data reported by other authors. The present paper is a continuation of papers [9], [ 11], [ 19], where the interactive buckling of thin-walled beam-columns with central intermediate stiffeners in the first and the second order approximation was considered. The most important advantage of this method is that it enables us to describe a complete range of behaviour ot· thin-walled structures from all global (flexural. flexural-torsional, lateral, distortional and their combinations) to local stability. In the solution obtained, the effects of interaction of modes, the transformation of buckling modes with an increase in load, the shear lag phenomenon and also the effect of cross-sectional distortions arc included.
Go to article

Authors and Affiliations

Andrzej Teter
Zbigniew Kolakowski
Download PDF Download RIS Download Bibtex

Abstract

The paper contains a review of energy-based multiaxial fatigue failure criteria for cyclic and random loading. The criteria for cyclic loading have been divided into three groups, depending on the kind of strain energy density per cycle which is assumed as a damage parameter. They are: a) criteria based on elastic strain energy for high-cycle fatigue, b) criteria based on plastic strain energy for low-cycle fatigue. and c) criteria based on the sum of plastic and elastic strain energies for both low- and high-cycle fatigue. The criterion for random loading is based on the new definition of energy parameter which distinguishes plus and minus signs in history or specific work of stress on strain along chosen directions in the critical fracture plane. The criteria which rake into account strain energy density in the critical plane dominate in the energy description or multiaxial fatigue. Parameters dependent on loading and factors dependent on a kind or marcrial and inlluencing selection of the critical plane have been given. The author presented the mathematical models or the criteria and next distinguished those including influence of mean stresses and stress gradients as well as proportional and non-proportional loading. It has been emphasised that the generalized criterion of maximum shear and normal strain energy density in the critical plane seems to be the most efficient in practice and it should be developed and verified in a future.
Go to article

Authors and Affiliations

Ewald Macha
Download PDF Download RIS Download Bibtex

Abstract

In Western music culture instruments have been developed according to unique instrument acoustical features based on types of excitation, resonance, and radiation. These include the woodwind, brass, bowed and plucked string, and percussion families of instruments. On the other hand, instrument performance depends on musical training, and music listening depends on perception of instrument output. Since musical signals are easier to understand in the frequency domain than the time domain, much effort has been made to perform spectral analysis and extract salient parameters, such as spectral centroids, in order to create simplified synthesis models for musical instrument sound synthesis. Moreover, perceptual tests have been made to determine the relative importance of various parameters, such as spectral centroid variation, spectral incoherence, and spectral irregularity. It turns out that the importance of particular parameters depends on both their strengths within musical sounds as well as the robustness of their effect on perception. Methods that the author and his colleagues have used to explore timbre perception are: 1) discrimination of parameter reduction or elimination; 2) dissimilarity judgments together with multidimensional scaling; 3) informal listening to sound morphing examples. This paper discusses ramifications of this work for sound synthesis and timbre transposition.

Go to article

Authors and Affiliations

James Beauchamp

This page uses 'cookies'. Learn more