Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Data

Wyniki wyszukiwania

Wyników: 3
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Magnetic microstructure in the as suction cast Fe 69B 20Nb 2Hf 2Si 2Y 5 alloy was revealed by combined Lorentz-TEM and LM-STEM DPC analysis. The thin foil of the alloy was found to be composed primarily of the amorphous phase with few dendritic structures. Magnetic domains were found large in the µm range with an average domain wall width of 52 nm. The magnetic domain boundaries are easily mobile, what was confirmed by in situ applied magnetic field. The LM-STEM DPC complements the Lorentz-TEM analysis by providing details on the intensity and spatial distribution of the magnetization vector within the domains.
Przejdź do artykułu

Autorzy i Afiliacje

P. Czaja
1
ORCID: ORCID

  1. The Aleksander Krupkowski Institute of Metallurgy and Materials Science Polish Academy of Sciences, 25 Reymonta Str., 30-059 Kraków, Poland

Abstrakt

In the present work, we performed the ultra-rapid annealing (URA) process for amorphous Fe78Ni8B14 melt-spun ribbons in order to obtain fine excellent microstructure assuring the best soft magnetic properties. Several microscopic methods mainly based on transmission electron microscopy (TEM) and Lorentz TEM (L-TEM) were applied for detailed studies of the microstructure and magnetic domains structure. The investigation revealed that the optimized parameters of the URA process (500°C/0.5-5 s) lead to outstanding soft magnetic properties. A mixture containing close to 50% amorphous phase and 50% α-Fe nanocrystals of size up to 30 nm has been already obtained after annealing for 3 s. These annealing conditions appear to be the most suitable in terms of microstructure providing the best magnetic properties.
Przejdź do artykułu

Autorzy i Afiliacje

Wojciech Maziarz
1
ORCID: ORCID
A. Kolano-Burian
2
ORCID: ORCID
M. Kowalczyk
3
ORCID: ORCID
P. Błyskun
3
ORCID: ORCID
R. Chulist
1
ORCID: ORCID
P. Czaja
1
ORCID: ORCID
M. Szlezynger
1
ORCID: ORCID
A. Wójcik
1
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland
  2. Lukasiewicz Research Network – institute of non-Ferrous Metals, 5 Generała Józefa Sowińskiego str., 44-121 Gliwice, Poland
  3. Warsaw University of Technology, the Faculty of Materials Science and Engineering, 141 Wołoska stR., 02-507 Warszawa, Poland

Abstrakt

Improvement of magnetic properties of electrical steel can be achieved by reduction the size of magnetic domains. The application of local stresses through laser scribing leads to reduced core losses. In order to determine the effect of laser refinement conditions of magnetic domains on the properties of the soft magnetic material, four samples with a thickness 0.23 mm were refined. The refinement of each sample was carried out using different line energies of the laser beam. Estimation of the magnetic domain size was performed using the Jeffries method, the magnetic viewer was used to reveal the domain structure. The measurement of the magnetic properties was performed at a frequency of 50 Hz and an induction of 1.5 T. The analyzed results presented in this work indicate impact of laser refining on magnetic properties of grain oriented electrical steel depending on used laser beam energy.
Przejdź do artykułu

Autorzy i Afiliacje

K. Ścibisz
1
ORCID: ORCID
J. Krawczyk
2
ORCID: ORCID

  1. ArcelorMittal Poland S.A. Unit in Krakow, Tadeusza Sendzimira 1 Str., 31-752 Krakow, Poland; AGH University of Krakow, Faculty of Metals Engineering and Computer Science, AGH Do ctoral School, al. Mickiewicza 30, 30-059 Krakow, Poland
  2. AGH University of Krakow, Faculty of Metals Engineering and Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji