Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 20
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents methods of analytical and measurement-based determination of pressures acting on sheet metal in the process of electrodynamic forming by means of flat inductors generating pulse magnetic field. Pressures are determined for sheet metal of different thicknesses processed by means of circular and elliptical spiral inductors. The paper describes also examples of copper and aluminium sheet metal forming conducted by means of the analysed inductors and shaped forming dies.
Go to article

Authors and Affiliations

Józef Bednarski
Gerard Głuch
Andrzej Kot
Download PDF Download RIS Download Bibtex

Abstract

A ship built from ferromagnetic steel disturbs the uniformity of the Earth’s magnetic field. Changes of ship’s signature are due to the magneto-mechanical interaction of the hull with the Earth’s magnetic field. The ship’s magnetic field can be detected by a magnetic naval mine. For this reason, the vessel has to be demagnetized. There are several methods of ship’s de-perming. The results of experimental and computer simulations of the ship’s de-perming process using coils lying on the seabed are presented in this paper. The simulation of the de-perming process with a hysteresis model of ship’s steel was carried out in Opera-3d 18R2. The laboratory experiments were carried out using a physical ship’s model, several Helmholtz coils, magneto-resistive sensors, etc. The experiments and computer simulations have shown that ship’s de-perming with coils lying on the seabed is possible. The values of coil currents are over dozen times greater than those used in the standard method.

Go to article

Authors and Affiliations

Mirosław Wołoszyn
Piotr Jankowski
Download PDF Download RIS Download Bibtex

Abstract

The Kibble balance experiment is used to redefine the kilogram as a unit of mass based on the Planck constant. To demonstrate and understand the basic principle of the Kibble balance, the National Institute of Standards (NIS)-Egypt has constructed a prototype Kibble balance that can measure gram-level masses with 0.01% relative uncertainty. Through the construction of this prototype, the challenges can be studied and addressed to overcome the weaknesses of NIS’s prototype. This study presents the design and construction of the prototype Kibble balance. It also focuses on the design and performance of the magnetic system, which is a crucial element of the Kibble balance. Analytical modeling and finite element analysis were used to evaluate and improve the magnet system. Several other aspects were also discussed, including the yoke’s material and enhancing the magnetic profile within the air gap of the magnet system. Over a vertical distance of 30 mm inside the air gap, the magnetic flux density was found to be 0.3 T, and the uniformity was found to be 8 x 10 -5.
Go to article

Authors and Affiliations

Sayed Emira
1
E.R. Shaaban
2
M.M. Rashad
3
Shaker A. Gelany
1

  1. National Institute of Standards (NIS), Tersa St, El-Haram, PO Box 136, Code 12211, Giza, Egypt
  2. Department of Physics, Faculty of Science, Al-Azhar University, Assiut 71542, Egypt
  3. Central Metallurgical Research and Development Institute (CMRDI), P.O. BOX. 87 Helwan, Egypt 11421
Download PDF Download RIS Download Bibtex

Abstract

Influence of magnetic field on parameters of normal detonation wave and cumulation process of cylindrical detonation wave in gaseous explosive mixture was examined. A review of applications of generalised Chester-Chisnell-Whitham (CCW) method used for analysis of implosion processes of detonation waves is presented.
Go to article

Authors and Affiliations

Jerzy Tyl
Download PDF Download RIS Download Bibtex

Abstract

The article deals with effect the use of organic (biohumus) and mineral (biochar) fertilizers based on the products of chicken vital activity on changing the fertility of technogenic sod-podzolic soils exposed to constant and unstable magnetic fields. The germination and growth dynamics of grasses and onions were investigated. The rational rate of introduction of the studied fertilizers into the technogenic soil is determined. Running (RMF) and direct (DMF) magnetic fields were applied in two ways: with fertilizers added and without fertilizers added. It has been established that the effect of preliminary magnetization of technogenic soil has a significant effect on lawn grass germination and the length of onion feathers, which are more than twice the height when exposed to the RMF, as compared with DMF. The effect of RMF on grass germination was also twice as high for DMF, when fertilizers were added. The DMF mag-netization and biohumus helps to increase the grass sprout height by 10–20%. Onion sprouts were higher in two cases: DMF and biohumus; RMF and biochar. The influence of the factor of fertilizer type has a significant effect in 30–40% of cases, whilst at a spread rate of more than 5%, significant chemical activity of biochar negatively affects the germination of both grass and onion.
Go to article

Authors and Affiliations

Maria Vasilyeva
1
ORCID: ORCID
Stanislav Kovshov
2
ORCID: ORCID
Johnny Zambrano
3
ORCID: ORCID
Maxim Zhemchuzhnikov
4
ORCID: ORCID

  1. Saint Petersburg Mining University, Faculty of Mechanical Engineering, Department of Transport and Technological Processes and Machines, 2, 21st Line, St Petersburg 199106, Russia
  2. Saint Petersburg Mining University, Department of Industrial Safety, St Petersburg, Russia
  3. Escuela Politecnica Nacional, Departamento de Petróleos, Quito, Ecuador
  4. JSC Roskar Poultry Farm, Pervomayskoe settlement, Leningrad region, Russia
Download PDF Download RIS Download Bibtex

Abstract

In the paper, methodologies for the magnetic field simulation in an axial flux permanent magnet coreless (AFPMC) motor have been proposed and discussed. Two approaches have been considered and investigated, both based on representing the 3D field distribution by superimposing axisymmetric 2D patterns. The first of studied approaches applies directly to the Biot-Savart law while the second uses a 2D axisymmetric finite element method. The selected results of magnetic field distributions and electromagnetic torque characteristics for the considered AFPMC motor have been presented and compared with results obtained using the commercial FEM package 'Maxwell'. The elaborated algorithms have been incorporated into the design routines allowing multi-parameter optimisation of the considered motor construction.

Go to article

Authors and Affiliations

Rafał M. Wojciechowski
Download PDF Download RIS Download Bibtex

Abstract

The paper is devoted to study the effect of gravity, magnetic field and laser pulse on the general model of the equations of generalized thermoelasticity for a homogeneous isotropic elastic half-space. The formulation is applied under four theories of generalized thermoelasticity: the coupled theory, Lord-Schulman theory, Green-Lindsay theory as well as Green-Naghdi theory. By employing normal mode analysis, the analytical expressions for the displacement components, temperature and the (mechanical and Maxwell’s) stresses distribution are obtained in the physical domain. These expressions are also calculated numerically and corresponding graphs are plotted to illustrate and compare the theoretical results. The effect of gravity, magnetic field and laser pulse are also studied and displayed graphically to show the physical meaning of the phenomena. A comparison has been made between the present results and the results obtained by the others. The results indicate that the effects of magnetic field, laser pulse and gravity field are very pronounced.

Go to article

Authors and Affiliations

Sayed M. Abo-Dahab
Abdelmooty M. Abd-Alla
Abdelkalk J. Alqarni
Download PDF Download RIS Download Bibtex

Abstract

The current research aimed to use non traditional methods to control some stored grain insects. The effects of 180 millitesla (mT) magnetic field (MF) for six different exposure periods (3 min, 30 min, 1 h, 12 h, 24 h and 48 h) on mortality (%) of two stored grain insects, Tribolium casteneum adults and Trogoderma granarium larvae, reduction in F1-progeny (%), seeds germination (%) and seed components (%) after 8 months storage period were studied under laboratory conditions. According to results, the mortality (%) of tested insects increased with increasing of MF time exposure. Trogoderma granarium was more resistant than T. casteneum in which mortality reached 56 and 75%, respectively 14 days after from exposure period. Without any negative effect on seeds germination (%) the MF was very effective in protecting stored wheat from insect infestation up to 8 months compared to non-magnetic seeds which became infested after 3 months of storage. Furthermore, the germination (%) was accelerated by 6 h compared to non-magnetic seeds. The MF level caused a slight increase in the percent of total carbohydrate, crude protein and ash while slightly decrease the percent of moisture, total fats and crude fiber.

Go to article

Authors and Affiliations

Doaa Mohamed Zein
Abdelkhalek Hussein
Download PDF Download RIS Download Bibtex

Abstract

The effect of a static magnetic field (MF) of 7 mT with phenol (P) or p-chlorophenol (p-chP) concentrations of 100 mg∙dm –3 on the proliferation of Saccharomyces cerevisiae yeast was investigated. The abundance of the microorganism was determined under static culture conditions on a YPG medium with or without the addition of P or p-chP and exposed or unexposed to the MF over 48 h of the experiment. A static MF of 7 mT was shown to have a stimulating effect on S. cerevisiae cell proliferation after 24 h. It was proved that P and p-chP were used as an additional carbon source by yeasts. The greatest stimulation of the growth of the studied microorganisms was observed under the simultaneous effect of an MF and in presence of either P or p-chP. It was generally about 2 times higher at the time of the study than in the control. Statistical analysis of the results was carried out using, among other things, analysis of variance (ANOVA). A statistically significant difference in the growth of the tested microorganisms was observed. The study results indicate the possibility of applying an MF of 7 mT to enhance the process of phenol and p-chlorophenol removal from industrial wastewater.
Go to article

Authors and Affiliations

Anna Rutkowska-Narożniak
1
ORCID: ORCID
Elżbieta Pajor
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Building Services, Hydro and Environmental Engineering
Download PDF Download RIS Download Bibtex

Abstract

The development of transport infrastructure strengthens the technogenic burden on the environment. Waste, thaw and rain waters from vehicle transport enterprises, such as car-washing installations, petrol stations, and car service stations may pollute ground and surface waters, and adjacent landscapes. The article presents quality parameters and suggests a number of measures permitting to minimize the harmful impact on the environment. The purpose is to improve the reagent treatment technology applicable to surface runoff from vehicle transport enterprises and the reuse of circulating waters by improving well-known methods with original technological procedures and chemical reagents. Research methods include the use of potentiometry, titrometry, and gravimetry. The investigation has shown the possibility to increase the efficiency of runoff treatment and removal of suspended particles and dissolved organic matter by 20–30%. This can be achieved by the application of a permanent magnetic field of 30–40 mT and the subsequent processing by the solution of aluminum chlorohydrate. Optimum parameters have been determined regarding magnetic field and processing conditions. It has been proven that the use of aluminum chlorohydrate in combination with polyhexamethyleneguanidine hydrochloride simplifies substantially the technological cycle. A better treatment can be achieved in comparison with the usual coagulant by 25%. Heavy metal ions are removed from water and the method includes microbiological disinfection and preservation of water in storage reservoirs. The improved technological scheme suggests the reagent treatment of storm and circulating waters for their repeated use.
Go to article

Authors and Affiliations

Oleksandr Kvartenko
1
ORCID: ORCID
Andriy Lysytsya
2
ORCID: ORCID
Nataliya Kovalchuk
1
ORCID: ORCID
Ihor Prysiazhniuk
2
ORCID: ORCID
Oksana Pletuk
1
ORCID: ORCID

  1. National University of Water and Environmental Engineering, Educational and Scientific Institute of Construction and Architecture, Rivne 11 Soborna St., 33028, Ukraine
  2. Rivne State University of Humanities, Faculty of Natural Sciences and Psychology, Plastova St, 31, Rivne, 33000, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The paper presents research on the capability of the residual magnetic field (RMF) measurement system to be applied to the railway inspection for the early non-destructive detection of defects. The metal magnetic memory (MMM) phenomena are analysed using normal component Hy of self-magnetic flux leakage (SMFL), and its tangential component Hx, as well as their respective gradients. The measurement apparatus is described together with possible factors that may affect the results of measurement. The Type A uncertainty estimation and repeatability tests were performed. The results demonstrate that the system may be successfully applied to detection of head check flaws.

Go to article

Authors and Affiliations

Mirosław Rucki
ORCID: ORCID
Anna Gockiewicz
Tadeusz Szumiata
Download PDF Download RIS Download Bibtex

Abstract

Environmental contamination is an urgent topic to be solved for sustainable society. Among various pollutants, microorganisms are believed to be the most dangerous and difficult to be completely inactivated. In this research, a new hybrid photoreactor assisted with rotating magnetic field (RMF) has been proposed for the efficient removal of two types of bacteria, i.e., gram-negative Escherichia coli and gram-positive Staphylococcus epidermidis. Three selfsynthesized photocatalysts were used, based on commercial titanium(IV) oxide - P25, homogenized and then modified with copper by photodeposition, as follows: 0.5Cu@HomoP25, 2.0Cu@HomoP25 and 5.0Cu@HomoP25 containg 0.5, 2.0 and 5.0 wt% of deposited copper, respectively. The response surface methodology (RSM) was employed to design the experiments and to deteremine the optimal conditions. The effects of various parameters such as copper concentration [% w/w], time [h] and frequency of RMF [Hz] were studied. Results: Analysis of variance (ANOVA), revealed a good agreement between experimental data and proposed quadratic polynomial model ((R2=0.86 for E. coli and R2=0.69 for S. epidermidis). Experimental results showed that with increasing copper concentration, time and decreasing of frequency of RMF removal efficiency was increased. Accordingly, the water disinfection efficiency of 100% in terms of the independent variables was optimized, including cooper concentration c =5 % and 2.5% w/w, time t = 3 h and 1.3 h and frequency of rotating magnetic field f = 50 Hz and 26.6 for E.coli and S. epidermidis, respectively. This study showed that response surface methodology is a useful tool for optimizing the operating parameters for photocatalytic disinfection process.
Go to article

Authors and Affiliations

Oliwia Paszkiewicz
1
ORCID: ORCID
Kunlei Wang
2
ORCID: ORCID
Marian Kordas
1
ORCID: ORCID
Rafał Rakoczy
1
ORCID: ORCID
Ewa Kowalska
2 3
ORCID: ORCID
Agata Markowska-Szczupak
1
ORCID: ORCID

  1. West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technologyand Engineering, Department of Chemical and Process Engineering, Piastow 42, 71-065Szczecin, Poland
  2. Hokkaido University, Institute for Catalysis (ICAT), N21, W9, 001-0021 Sapporo, Japan
  3. Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The effect of large injection rates on the steady laminar compressible boundary layer in the front stagnation-point region of a rotating sphere with a magnetic field has been studied. The effect of variable gas properties, non-unity Prandtl number and viscous dissipation are included in the analysis. The nonlinear coupled ordinary differential equations governing the flow are first linearized using the quasilinearization technique, and the resulting system of linear equations are then solved using an implicit finite-difference scheme with non-uniform step size. For large injection rates, analytical expressions for the surface shear stresses in the longitudinal and rotating directions and the surface heat transfer are also obtained using an approximate method. For large injection rates, the surface heat transfer tends to zero, but the surface shear stresses in the longitudinal and rotating directions remain finite but small. The surface shear stresses and the surface heat transfer decrease with increasing rate of injection, but they increase with the magnetic field and the rotation parameter. The magnetic field or the rotation parameter induces an overshoot in the longitudinal velocity profile and the magnitude of the velocity overshoot increases significantly with the rotation parameters and the injection parameter. The location of the dividing streamline moves away from the boundary with increasing injection rate, but it moves towards the boundary with increasing magnetic and rotation parameters.
Go to article

Authors and Affiliations

Mahesh Kumari
Girishwar Nath
Download PDF Download RIS Download Bibtex

Abstract

In this work the nickel-based coatings were obtained by electroless catalytic deposition on light-hardened resins dedicated for 3D printing by SLA method. The effect of external magnetic field application on the properties of nickel-based coatings was determined. During metallization, the magnetic field was applied to the sample’s surface with different orientations. Due to the magnetic properties of metallic ions, the influence of the magnetic field on coatings properties is expected. The coatings were analyzed by Energy-dispersive X-ray spectroscopy (ED S) the X-Ray diffraction (XRD ) methods, and surface morphology was observed by scanning electron microscopy (SEM). The catalytic properties in a hydrogen evolution reaction (HER ) were measured by electrochemical method in 1 M NaOH solution. The best catalytic activity has been observed in the case of the ternary Ni-Fe-P alloy deposited under a parallel magnetic field. The primary outcome of the presented research is to produce elements based on 3D printing from resins, which can then be metallized and used for highly-active materials deposited on complex 3D models. Furthermore, these elements can be used as low-cost, highly-developed sensors and catalysts for various chemical processes.
Go to article

Authors and Affiliations

K. Kołczyk-Siedlecka
1
ORCID: ORCID
D. Kutyła
1
ORCID: ORCID
K. Skibińska
1
ORCID: ORCID
A. Jędraczka
1
ORCID: ORCID
P. Żabiński
1
ORCID: ORCID

  1. AGH University of Krakow, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

The main purpose of the paper is to present a method which allows taking into account the anisotropic properties of dynamo steel sheets. An additional aim is to briefly present anisotropic properties of these sheets which are caused by occurrences of some textures. In order to take into account textures occurring in dynamo sheets, a certain sheet sample is divided into elementary segments. Two matrix equations, describing changes of the magnetic field, are transformed to one non-linear algebraic equation in which the field strength components are unknown. In this transformation the flux densities assigned to individual elementary segments are replaced by functions of flux densities of easy magnetization axes of all textures occurring in the given dynamo sheet. The procedure presented in the paper allows determining one non-linear matrix equation of the magnetic field distribution; in this equation all textures occurring in a dynamo sheet are included. Information about textures occurring in typical dynamo sheets may be used in various approaches regarding the inclusion of anisotropic properties of these sheets, but above all, the presented method can be helpful in calculations of the magnetic field distribution in anisotropic dynamo sheets.

Go to article

Authors and Affiliations

Witold Mazgaj
ORCID: ORCID
Zbigniew Szular
Michał Sierżęga
ORCID: ORCID
Paweł Szczurek
Download PDF Download RIS Download Bibtex

Abstract

The aim of the considerations presented in the article was a stand-alone groundbased photovoltaic power plant. The article is devoted to the qualitative analysis of some lightning protection configurations. These types of constructions often require an individual look at the design and execution of lightning protection installations, which causes problems with the selection of optimal solutions. These problems relate primarily to the way the lightning rods are arranged to create protection zones, but also to the way they are attached: to the supporting structure for PV modules or as free-standing. Another problem raised in the article is the way how lightning current is discharged from rods to the ground and how it is dispersed there. Due to the vast area of such facilities and the requirements for electrical safety, it is necessary to consider and design a ground system with optimal electrical parameters, but also technical and economic ones. All these elements have their impact on the value of voltages induced in the electrical installation, which is also presented in the content of the article as the magnetic field distribution and calculation of induced voltages in an exemplary configuration. Finally, this article will compare described technical solutions encountered in selecting the best protection method for this type of photovoltaic installation.
Go to article

Authors and Affiliations

Konrad Sobolewski
1
ORCID: ORCID
Emilia Sobieska
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Electrical Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

We demonstrate in this study that a rotating magnetic field (RMF) and spinning magnetic particles using this kind of magnetic field give rise to a motion mechanism capable of triggering mixing effect in liquids. In this experimental work two mixing mechanisms were used, magnetohydrodynamics due to the Lorentz force and mixing due to magnetic particles under the action of RMF, acted upon by the Kelvin force. To evidence these mechanisms,we report mixing time measured during the neutralization process (weak acid-strong base) under the action of RMF with and without magnetic particles. The efficiency of the mixing process was enhanced by a maximum of 6.5% and 12.8% owing to the application of RMF and the synergistic effect of magnetic field and magnetic particles, respectively.
Go to article

Bibliography

Baldyga J., Bourne J.R., 1988. Calculation of micromixing in inhomogenous stirred tank reactors. Chem. Eng. Res. Des., 66(1), 33–38.

Baldyga J., Bourne J.R., 1992. Interactions between mixing on various scales in stirred tank reactors. Chem. Eng. Sci., 47, 1839–1848. DOI: 10.1016/0009-2509(92)80302-S.

Bałdyga J., Pohorecki R., 2013. Editorial. 14th European Conference on Mixing. Chem. Eng. Res. Des., 91(11), 2071–2072). DOI: 10.1016/j.cherd.2013.10.021.

Bao S.R., Zhang R.P., Rong Y., Zhi X.Q., Qiu L.M., 2019. Interferometric study of the heat and mass transfer during the mixing and evaporation of liquid oxygen and nitrogen under non-uniform magnetic field. Int. J. Heat Mass Transfer, 136, 10–19. DOI: 10.1016/j.ijheatmasstransfer.2019.02.044.

Boroun S., Larachi F., 2016. Role of magnetic nanoparticles in mixing, transport phenomena and reaction engineering – challenges and opportunities. Curr. Opin. Chem. Eng., 13, 91–99. DOI: 10.1016/j.coche.2016.08.011.

Boulware J.C., Ban H., Jensen, S., Wassom S., 2010. Influence of geometry on liquid oxygen magnetohydrodynamics. Exp. Therm Fluid Sci., 34, 1182–1193. DOI: 10.1016/j.expthermflusci.2010.04.007.

Chen X., Zhang L., 2019. A review on micromicers acuated with magnetic nanomaterials. Microchim Acta, 184, 3639–3649. DOI: 10.1007/s00604-017-2462-2.

Davidson P.A., 1999. Magnetohydrodynamics in materials processing. Annu. Rev. Fluid Mech., 31, 273–300. DOI: 10.1146/annurev.fluid.31.1.273.

Davidson P.A., 2001. An introduction to magnetohydrodynamics. Cambridge Uniwversity Press. DOI: 10.1017/CBO9780511626333.

Ergin F.G.,Watz B.B., Erglis K., Cebers A., 2015. Time-resolved velocity measurements in a magnetic micromixer. Exp. Therm Fluid Sci., 67. DOI: 10.1016/j.expthermflusci.2015.02.019.

Gao Y., 2013. Active mixing and catching using magnetic particles. Phd Thesis. Technische Universiteit Eindhoven. DOI: 10.6100/IR759475.

Gopalakrishnan S., Thess A., 2010. Chaotic mixing in electromagnetically controlled thermal convection of glass melt. Chem. Eng. Sci., 65, 5309–5319. DOI: 10.1016/j.ces.2010.07.008.

Hajiani P., Larachi F., 2014. Magnetic-field assisted mixing of liquids using magnetic nanoparticles. Chem. Eng. Process., 84, 31–37. DOI: 10.1016/j.cep.2014.03.012.

Hajiani P, Larachi F., 2013. Remotely excited magnetic nanoparticles and gas–liquid mass transfer in Taylor flow regime. Chem. Eng. Sci., 93, 257–265. DOI: 10.1016/j.ces.2013.01.052.

Hao Z., Zhu Q., Jiang Z., Li H., 2008. Fluidization characteristics of aerogel Co/Al2O3 catalyst in a magnetic fluidized bed and its application to CH4-CO2 reforming. Powder Technol., 183, 46–52. DOI: 10.1016/j.powtec.2007.11.015.

Harnby N., Edwards M.F., Nienow A.W., 1985. Mixing in the process industries. Butterworth-Heinemann. DOI: 10.1016/b978-0-7506-3760-2.x5020-3.

Hausmann R., Reichert C., Franzreb M., HöllW.H., 2004. Liquid-phase mass transfer of magnetic ion exchangers in magnetically influenced fluidized beds: II. AC fields. React. Funct. Polym., 60, 17–26. DOI: 10.1016/j.reactfunct polym.2004.02.007.

Hristov J., 2002. Magnetic field assisted fluidization – a unified aproach Part 1. Fundamentals and relevant hydrodynamics of gas-fluidized beds (batch solids mode). Rev. Chem. Eng., 18, 295–512. DOI: 10.1515/REVCE.2002.18.4-5.295.

Hristov J., 2007. Magnetic field assisted fluidization-Dimensional analysis addressing the physical basis. China Particuology, 5, 103–110. DOI: 10.1016/j.cpart.2007.03.002.

Hristov J., 2010. Magnetic field assisted fluidization – A unified approach. Part 8. Mass transfer: Magnetically assisted bioprocesses. Rev. Chem. Eng., 26, 55–128. DOI: 10.1515/REVCE.2010.006.

Hristov J.Y., 1998. Fluidization of ferromagnetic particles in a magnetic field Part 2: Field effects on preliminarily gas fluidized bed. Powder Technol., 97, 35–44. DOI: 10.1016/S0032-5910(97)03392-5.

Krakov M.S., 2020. Mixing of miscible magnetic and non-magnetic fluids with a rotating magnetic field. J. Magn. Magn. Mater., 498. DOI: 10.1016/j.jmmm.2019.166186.

Lange A., 2002.Kelvin force in a layer of magnetic fluid. J. Magn. Magn. Mater., 241, 327–329. DOI: 10.1016/S0304 -8853(01)01368-3.

Lu X., Li H., 2000. Fluidization of CaCO3 and Fe2O3 particle mixtures in a transverse rotating magnetic field. Powder Technol., 107, 66–78. DOI: 10.1016/S0032-5910(99)00092-3.

Moffatt H.K., 1965. On fluid flow induced by a rotating magnetic field. J. Fluid Mech., 22, 521–528. DOI: 10.1017/S0022112065000940.

Moffatt H.K., 1990. On the behaviour of a suspension of conducting particles subjected to a time-periodic magnetic field. J. Fluid Mech., 218, 509–529. DOI: 10.1017/S0022112090001094.

Moffatt H.K., 1991. Electromagnetic stirring. Phys. Fluids A, 3, 1336–1343. DOI: 10.1063/1.858062.

Molokov S., Moreau R., Moffat H.K., 2007. Magnetohydrodynamics. Historical evolution and trends. Springer Science+Business Media B.V. DOI: 10.1007/978-1-4020-4833-3.

Nouri D., Zabihi-Hesari A., Passandideh-Fard M., 2017. Rapid mixing in micromixers using magnetic field. Sens. Actuators, A, 255, 79–86. DOI: 10.1016/j.sna.2017.01.005.

Olivier G., Pouya H., Fadçal L., 2014. Magnetically induced agitation in liquid–liquid–magnetic nanoparticle emulsions: Potential for process intensification. AIChE J., 60, 1176–1181. DOI: 10.1002/AIC.14331.

Penchev I.P., Hristov J.Y., 1990. Fluidization of beds of ferromagnetic particles in a transverse magnetic field. Powder Technol., 62, 1–11. DOI: 10.1016/0032-5910(90)80016-R.

Poulsen B.R., Iversen J.J.L., 1997. Mixing determinations in reactor vessels using linear buffers. Chem. Eng. Sci., 52, 979–984. DOI: 10.1016/S0009-2509(96)00466-6.
Go to article

Authors and Affiliations

Rafał Rakoczy
1
ORCID: ORCID
Marian Kordas
1
ORCID: ORCID
Agata Markowska-Szczupak
1
ORCID: ORCID
Maciej Konopacki
1
ORCID: ORCID
Adrian Augustyniak
1
ORCID: ORCID
Joanna Jabłońska
1
Oliwia Paszkiewicz
1
ORCID: ORCID
Kamila Dubrowska
1
Grzegorz Story
1
Anna Story
1
Katarzyna Ziętarska
1
Dawid Sołoducha
1
Tomasz Borowski
1
Marta Roszak
2
Bartłomiej Grygorcewicz
2
ORCID: ORCID
Barbara Dołęgowska
2
ORCID: ORCID

  1. West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42,71-065 Szczecin, Poland
  2. Pomeranian Medical University in Szczecin, Chair of Microbiology, Immunology and Laboratory Medicine, Department of Laboratory Medicine, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the possibility of fabricating ceramic-metal composites by an innovative method of centrifugal slip casting in the magnetic field. It was examined whether the use of this method would allow obtaining a gradient concentration of metal particles in the ceramic matrix. In the applied technique, the horizontal rotation axis was used. The study investigated the effect of solid phase content on the properties and microstructure of the products. Water-based suspensions with 35, 40, 45 and 50 vol.% of solid-phase content were prepared with 10 vol.% additional of nickel powder. The viscosity of prepared slurries was considered. The gradient distribution of nickel particles in the zirconia matrix was observed on SEM. Vickers hardness of ZrO2-Ni composites has been measured. The research revealed that the physical properties depend on the volume fraction of solid content and increase as the volume of solid content increases.

Go to article

Authors and Affiliations

M. Wachowski
ORCID: ORCID
R. Kosturek
ORCID: ORCID
H. Winkler
A. Miazga
P. Lada
W. Kaszuwara
K. Konopka
J. Zygmuntowicz
Download PDF Download RIS Download Bibtex

Abstract

The work discusses numerical and experimental researches, which are focused on developing a coherent model of magnetic interactions causing the levitation of the starting trolley of the unmanned aerial vehicle (UAV) catapult. The starting trolley is levitating over the catapult’s tracks, which generate the magnetic field. The levitation is made possible by the diamagnetic properties of high-temperature superconductors, placed in supports of the starting trolley. The introduction of the article briefly analyzes the catapult structure. Next, it explains the nature of associated with the Meissner and flux pinning effect magnetic interactions which causes the levitation phenomenon. The paper presents the results of numerical analysis of the magnetic field, generated by the catapult’s tracks arranged in two configurations: a “chessboard” and a “gutter” pattern. The numerical model was solved, using the finite element method. Parameterization of the numerical model was made based on the measurements of the magnetic field, generated by a single magnet.

Go to article

Authors and Affiliations

A. Sibilska-Mroziewicz
E. Ładyżyńska-Kozdraś
K. Falkowski
K. Sibilski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research from the analysis of primary magnetization curves for Fe based amorphous alloys. Structural defects in the form of pseudodislocation dipoles occur in amorphous alloys. Using the theory developed by H. Kronmuller called the approach to ferromagnetic saturation, it is possible to indirectly observe internal stresses occurring in the volume of amorphous alloys. The magnetic structure is sensitive to all kinds of inhomogeneities that become visible in the process of high-field magnetization. It has been shown that the cooling rate of the liquid alloy has a great influence on the migration of atoms during the solidification process. Longer time of alloy formation causes more atoms to occupy ordered positions, which results in a change in the distance between the magnetic atoms and a higher degree of structure relaxation. This is indicated by a significant difference in the value of the spin wave stiffness parameter Dspf. The structural differences of the alloys were also investigated using a magnetic balance. It has been shown that the cooling rate influences insignificant differences in the course of thermomagnetic curves and the Curie temperature.
Go to article

Authors and Affiliations

B. Jeż
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automati on, 19c Armii Krajowej Str., 42-200 Czestochowa, Poland

This page uses 'cookies'. Learn more