Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

According to metrological guidelines and specific legal requirements, every smart electronic electricity meter has to be constantly verified after pre-defined regular time intervals. The problem is that in most cases these pre-defined time intervals are based on some previous experience or empirical knowledge and rarely on scientifically sound data. Since the verification itself is a costly procedure it would be advantageous to put more effort into defining the required verification periods. Therefore, a fixed verification interval, recommended by various internal documents, standardised evaluation procedures and national legislation, could be technically and scientifically more justified and consequently more appropriate and trustworthy for the end user. This paper describes an experiment to determine the effect of alternating temperature and humidity and constant high current on a smart electronic electricity meter’s measurement accuracy. Based on an analysis of these effects it is proposed that the current fixed verification interval could be revised, taking into account also different climatic influence. The findings of this work could influence a new standardized procedure in respect of a meter’s verification interval.

Go to article

Authors and Affiliations

Blaž Radej
Janko Drnovšek
Gaber Begeš
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the application of liquid crystal thermography for temperature determination and visualisation of two phase flow images on the studied surface. Properties and applications of thermochromic liquid crystals are discussed. Liquid crystals were applied for two-dimensional detection of the temperature of the heating foil forming one of the surfaces of the minichannel along which the cooling liquid flowed. The heat flux supplied to the heating surface was altered in the investigation and it was accompanied by a change in the color distribution on the surface. The accuracy of temperature measurements on the surface with liquid crystal thermography is estimated. The method of visualisation of two-phase flow structures is described. The analysis of monochrome images of flow structures was employed to calculate the void fraction for some cross-sections. The flow structure photos were processed using Corel graphics software and binarized. The analysis of phase volumes employed Techsystem Globe software. The measurement error of void fraction is estimated.

Go to article

Authors and Affiliations

Magdalena Piasecka
Download PDF Download RIS Download Bibtex

Abstract

The wide variety of electrode shapes and their arrangement relative to each other, as well as the possibility of corona discharge in the ambient air, have created prerequisites for the development of a number of new methods and corona discharge transducers designed to measure microwire parameters and linear dimensions of various objects. The principally new noncontact control method is based on the dependence of the corona discharge current value on the diameter of the corona wire placed inside the discharge chamber. This paper provides an overview of this method.
Go to article

Bibliography

[1] Sh.A.Bahtaev, A.A.Bokanova, G.V.Bochkareva, G.K.Sydykova. Fizika i tehnika koronnorazrjadnyh priborov. Almaty 2007.
[2] Sh.A.Bahtaev, G.K.Sydykova, A.Zh. Tojgozhinova, K.Kodzhabergenova. Koronnyj razrjad na mikrojelektrodah. Almaty 2017 – 78p.
[3] Sh.A.Bakhtaev, G.V Bochkareva., G.D.Musapirova, “The pulsed current mode of the negative corona,” Vestnik Kaz NTU, no. 3, pp. 212-217, 2010.
[4] T. Abiru, F. Mitsugi, T. Ikegami, K. Ebihara, S.-ichi Aoqui, K. Nagahama, “Environmental application of electrical discharge for ozone treatment of soil,” Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, vol. 5, no. 4, pp. 42-44, 2015, https://doi.org/10.5604 /20830157.1176573.
[5] Z. Lv, S. Rowland, S.Chen, H. Zheng, K.Wu, “Modelling of partial discharge characteristics in electrical tree channels: Estimating the PD inception and extinction voltages,” IEEE Transactions on Dielectrics and Electrical Insulation, no. 25, pp. 1999-2010, 2018. doi: 10.1109/TDEI.2018.007175.
[6] M. Szadkowski, “New method of analysis of partial discharges,” Przegląd Elektrotechniczny, vol. 90 no. 3, 103-106, 2014. doi: 10.12915/pe.2014.03.21
[7] Sh.A. Bahtaev, G.V.Bochkarjova, G.I. Bokova, “Sposob kontrolja diametra mikroprovoloki,” Republic of Kazakhstan Patent no. 5070, Ofic.bjull., Prom.sobstv., no. 10, 1998.
[8] Sh.A.Bahtaev, G.D. Musapirova et al., “Ustrojstvo dlja izmerenija diametra mikroprovoloki,” Republic of Kazakhstan Patent no. 96543, Ofic.bjull., Prom.sobstv., no. 2, 30.01.2017.
[9] Predpatent RK №12038.Sposob izmerenija skorosti protjazhki mikroprovoloki // Bahtaev Sh.A. i dr.Opubl. Bjull.№9, 16.09.2002.
[10] G.V.Bochkareva, G.D.Musapirova, “The frequency characteristics of the differential conductivity of the corona in the high-frequency region,” in proc. The main problems of modern science: international materials. scientific-practical conf. - Bulgaria, pp. 92-94, 2010.
[11] Sh.A.Bakhtaev, G.V.Bochkareva, G.D. Musapirova, “Areas of existence of anomalies in the high-frequency conductivity of the positive corona,” Tomsk State University Journal. AIPP no. 2, pp. 18-23, 2010.

Go to article

Authors and Affiliations

Aliya S. Tergeussizova
1
Shabden A. Bakhtaev
2
Waldemar Wójcik
3
Bekmurza H. Aitchanov
4
Gulzada D. Mussapirova
2
Aynur Zh. Toygozhinova
5

  1. Kazakh National University named after al-Farabi, Almaty, Kazakhstan
  2. Almaty University of Power Engineering and Telecommunications, Almaty, Kazakhstan
  3. Lublin University of Technology, Lublin
  4. Suleyman Demirel University, Almaty, Kazakhstan
  5. Kazakh Academy of Transport and Communications named after M.Tynyshpayev, Almaty, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

Power systems that are highly loaded, especially by a stochastic supply of renewables and the presence of storages, require dynamic measurements for their optimal control. Phasor measurement units (PMUs) can be used to capture electrical parameters of a power system. Standards on the PMU dynamic performance have been modified to incorporate their new dynamic mode of operation. This paper examines the PMU dynamic performance and proposes essential algorithms for measurement accuracy verification. Measurements of dynamic input signals, which vary in amplitude or frequency, were taken during automated tests of two PMUs. The test results are presented and expounded with further recommendation for the performance requirements. This paper also presents and examines applied testing procedures with relevance to the specifications of the IEEE Standard for Synchrophasor C37.118.1™-2011 and its amendment C37.118.1a™-2014.

Go to article

Authors and Affiliations

Bartłomiej Arendarski
Steffen Rabe
Wolfram Heineken
Przemysław Komarnicki
Download PDF Download RIS Download Bibtex

Abstract

On the basis of a unipolar corona discharge, a method of non-contact and continuous measurement of linear parameters of thin and ultra-thin dielectric fibres and optical fibres (10 to 125 microns) in the process of their manufacture was developed. The measurement method differs from the commonly known methods by high accuracy and reliability of measurement and resistance to changes in the electrical characteristics of the discharge gap and the state of ambient air.
Go to article

Authors and Affiliations

Aliya S. Tergeussizova
1
Shabden A. Bakhtaev
2
Waldemar Wojcik
3
Ryszard Romaniuk
4
Bekmurza H. Aitchanov
5
Gulzada D. Mussapirova
2
Aynur Zh. Toygozhinova
6

  1. Kazakh National University named after al-Farabi, Almaty, Kazakhstan
  2. Almaty University of Power Engineering and Telecommunications, Almaty, Kazakhstan
  3. Lublin Technical University, Poland
  4. Warsaw University of Technology, Poland
  5. Suleyman Demirel University, Almaty, Kazakhstan
  6. Kazakh Academy of Transport and Communications named after M.Tynyshpayev, Almaty, Kazakhstan
Download PDF Download RIS Download Bibtex

Abstract

NTC thermistors are frequently used low in cost temperature sensors which provide some of the most desirable sensing features. However, due to the nonlinear static transfer function their sensitivity decreases with temperature increase, causing lower measurement accuracy in some regions of the measurement range. This paper proposes a method for NTC thermistor nonlinearity compensation using a Wheatstone bridge and a novel dual-stage single-flash piecewise-linear ADC. Both conversion stages are performed using the same flash ADC of a novel design based on a reduced number of comparators employed. In this manner, simpler design, lower production costs, higher compactness and lower power consumption of the linearizing ADC, are achieved. The proposed linearizing method is tested on the Vishay NTCLE413E2103F520L thermistor, in the range from 0°C to 100°C, and the obtained results confirmed the effectiveness of the method in measurement accuracy improvement: when the flash ADC of 10-bit resolution is employed the accuracy obtained is 7:4747 10-5°C.
Go to article

Bibliography

[1] Michalski, L., Eckersdorf, K., Kucharski, J., & McGhee, J. (2001). Temperature Measurement. John Wiley & Sons, Ltd. https://doi.org/10.1002/0470846135
[2] Webster, J., & Eren, H. (2014). Measurement, Instrumentation, and Sensors Handbook: Spatial, Mechanical, Thermal, and Radiation Measurement. CRC Press. https://doi.org/10.1201/b15474
[3] Vishay. (2020). NTC Thermistors, Mini Epoxy PVC Twin Insulated Leads. [Datasheet NTCLE413, Document Number: 29078]. https://www.vishay.com/docs/29078/ntcle413.pdf
[4] Jeong, D. H., Kim, J. D., Song, H. J., Kim, Y. S., & Park, C. Y. (2015). Efficient calibration tool for thermistor temperature measurements. Applied Mechanics and Materials, 764–765, 1304–1308. https://doi.org/10.4028/www.scientific.net/amm.764-765.1304
[5] Webster, J. G. (1999). The Measurement, Instrumentation and Sensors Handbook. CRC Press LLC. https://doi.org/10.1201/9781003040019
[6] Stankovic, S. B., & Kyriacou, P. A. (2011). Comparison of thermistor linearization techniques for accurate temperature measurement in phase change materials. Journal of Physics: Conference Series. 307(1), 1–6. https://doi.org/10.1088/1742-6596/307/1/012009
[7] Lukic, J., & Denic, D. (2015). A novel design of an NTC thermistor linearization circuit. Metrology and Measurement Systems, 22(3), 351–362. https://doi.org/10.1515/mms-2015-0035
[8] Oladimeji, I., Sabo Miya, H., Abdulkarim, A., Mudathir, A., & Amuda, S. (2019). Design of Wheatstone bridge based thermistor signal conditioning circuit for temperature measurement. Journal of Engineering Science and Technology Review. 12(1), 12–17. https://doi.org/10.25103/jestr.121.02
[9] Nagarajan, P. R., George, B., & Kumar, V. J. (2017). A linearizing digitizer for Wheatstone bridge based signal conditioning of resistive sensors. IEEE Sensors Journal, 17(6), 1696–1705. https://doi.org/10.1109/JSEN.2017.2653227
[10] Nenova, Z., & Nenov T. (2009). Linearization circuit of the thermistor connection. IEEE Transactions on Instrumentation and Measurement, 58(2), 441–449. https://doi.org/10.1109/TIM.2008.2003320
[11] Maiti, T. (2008). A new hardware approach for the linearization of remote thermistor temperaturevoltage characteristic. International Journal of Electronics, 95(2), 169–176. https://doi.org/10.1080/00207210801915642
[12] Sarkar, A., Dey, D., & Munshi, S. (2013). Linearization of NTC thermistor characteristic using opamp based inverting amplifier. IEEE Sensors Journal, 13(12), 4621–4626. https://doi.org/10.1109/JSEN.2013.2267332
[13] Lopez-Martin, A. J., & Carlosena, A. (2013). Sensor signal linearization techniques: A comparative analysis. Proceedings of the IEEE 4th Latin American Symposium on Circuits and Systems (LASCAS), Peru, 1–4. https://doi.org/10.1109/LASCAS.2013.6519013
[14] Dias Pereira, J. M., Postolache, O., & Silva Girao, P. M. B. (2007). A digitally programmable A/D converter for smart sensors applications. IEEE Transactions on Instrumentation and Measurement, 56(1), 158–163. https://doi.org/10.1109/TIM.2006.887771
[15] Santos, M., Horta, N., & Guilherme, J. (2014). A survey on nonlinear analog-to-digital converters. Integration, the VLSI Journal, 47(1), 12–22. https://doi.org/10.1016/j.vlsi.2013.06.001
[16] Mohan, N. M., Kumar, V. J., & Sankaran, P. (2011). Linearizing dual-slope digital converter suitable for a thermistor. IEEE Transactions on Instrumentation and Measurement, 60(5), 1515–1521. https://doi.org/10.1109/TIM.2010.2092875
[17] Mahaseth, D., Kumar, L., & Islam, T. (2018). An efficient signal conditioning circuit to piecewise linearizing the response characteristic of highly nonlinear sensors. Sensors and Actuators A: Physical, 280(2018), 559–572. https://doi.org/10.1016/j.sna.2018.08.001
[18] Lukic, J., Živanovic, D.,&Denic, D. (2015). A compact and cost-effective linearization circuit used for angular position sensors. Facta Universitatis Series: Automatic Control and Robotics, 14(2), 123–134.
[19] Lopez-Martin, A. J., Zuza, M., & Carlosena, A. (2003). A CMOS A/D converter with piecewise linear characteristic and its application to sensor linearization. Analog Integrated Circuits and Signal Processing, 36(1–2), 39–46. https://doi.org/10.1023/A:1024437311497
[20] Bucci, G., Faccio, M., & Landi, C. (2000). New ADC with piecewise linear characteristic: case studyimplementation of a smart humidity sensor. IEEE Transactions on Instrumentation and Measurement, 49(6), 1154–1166. https://doi.org/10.1109/19.893250
[21] Chio, U. F.,Wei, H. G., Zhu, Y., Sin, S. W., U. S. P., Martins, R. P.,&Maloberti, F. (2010). Design and experimental verification of a power effective flash-SAR subranging ADC. IEEE Transactions on Circuits and Systems – II: Express Briefs, 57(8), 607–611. https://doi.org/10.1109/TCSII.2010.2050937
[22] Jovanovic, J., & Denic, D. (2016). A cost-effective method for resolution increase of the two-stage piecewise linear ADC used for sensor linearization. Measurement Science Review, 16(1), 28–34. https://doi.org/10.1515/msr-2016-0005
[23] Lee, J. I., & Song, J. (2013). Flash ADC architecture using multiplexers to reduce a preamplifier and comparator count. Proceedings of the IEEE International Conference of IEEE Region 10 (TENCON 2013), China, 1–4. https://doi.org/10.1109/TENCON.2013.6718487
[24] Lee,W., Huang, P., Liao,Y.,&Hwang,Y. (2007).Anewlowpower flashADCusing multiple-selection method. Proceedings of the IEEE Conference on Electron Devices and Solid-State Circuits, Taiwan, 341–344. https://doi.org/10.1109/EDSSC.2007.4450132
[25] International Electrotechnical Commission. (2015). Preferred number series for resistors and capacitors (IEC 60063:2015). https://webstore.iec.ch/publication/22011
[26] Fraden, J. (2010). Handbook of Modern Sensors: Physics, Designs, and Applications. Springer Science + Business Media. https://doi.org/10.1007/978-1-4419-6466-3
[27] Regtien, P., & Dertien, E. (2018). Sensors for Mechatronics. Elsevier. https://doi.org/10.1016/ C2016-0-05059-3
Go to article

Authors and Affiliations

Jelena Jovanović
1
Dragan Denić
1

  1. University of Niš, Faculty of Electronic Engineering, Measurements Department, Aleksandra Medvedeva 14, 18000 Niš, Serbia

This page uses 'cookies'. Learn more