Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The polarized electromagnetic waves have significant impact on the performance of adaptive antenna arrays. In this paper we investigate the effect of polarized desired and undesired signals on the performance of electronically steered beam adaptive antenna arrays. To achieve this goal, we built an analytical signal model for the adaptive array, in order to analyze, and compare the effect of polarized signals on the output SINRs (signal to interference plus noise ratios) of single-dipole, and cross-dipole adaptive antenna arrays. Based on a proof-of-concept experiment, and on MATLAB simulation results, it will be shown that cross-dipole adaptive antenna arrays exhibit better performance in comparison with single-dipole adaptive antenna arrays in presence of randomly polarized signals. However, single-dipole arrays show better performance under certain operating conditions.

Go to article

Authors and Affiliations

Amin H. Al Ka'bi
Download PDF Download RIS Download Bibtex

Abstract

Ever rising increase in number of wireless services has prompted the use of spatial multiplexing through null steering.Various algorithms provide electronic control of antenna array pattern. Simulation-driven technique further introduces correction in array factor to account for array geometry. Taguchi method is used here to combat interference in practical antenna arrays of non-isotropic elements, by incorporating the effect of antenna element pattern on array pattern control in the optimization algorithm. 4-element rectangular and bowtie patch antenna arrays are considered to validate the effectiveness of Taguchi optimization. The difference in the computed excitations and accuracy of null steering confirms the dependence of beam pattern on element factor and hence eliminates the need for extra computations performed byconventional algorithms based on array factor correction. Taguchi method employs an orthogonal array and converges rapidly to the desired radiation pattern in 25 iterations, thus signifying it to be computationally cost-effective. A higher gain and a significant reduction in side lobe level (SLL) was obtained for the bowtie array. Further, due to feed along parallel edges of the patch, the radiating edges being slanted to form the bow shape results in a significant reduction in the area as compared with the rectangular patch designed to resonate at the same frequency.

Go to article

Authors and Affiliations

Baljinder Kaur
Anupma Marwaha
Download PDF Download RIS Download Bibtex

Abstract

This paper demonstrates a low-profile, wide-band, two-element, frequency-reconfigurable MIMO antenna that is suitable for diverse wireless applications of 4G and 5G such as WLAN/Bluetooth (2.4–2.5 GHz), WLAN (2.4–2.484 GHz, 5.15– 5.35 GHz, and 5.725–5.825 GHz), WiMAX (3.3–3.69 GHz and 5.25–5.85 GHz), Sub6GHz band proposed for 5G (3.4–3.6 GHz, 3.6-3.8GHz and 4.4–4.99 GHz), INSAT and satellite X-band(6 to 9.6 GHz). Proposed MIMO favour effortless switching between multiple bands ranging from 2.2 to 9.4 GHz without causing any interference. Both antenna elements in a MIMO array are made up of a single module comprised of a slot-loaded patch and a defective structured ground. Two PIN diodes are placed in the preset position of the ground defect to achieve frequencyreconfigurable qualities. The suggested MIMO antenna has a size of 62 ×25 ×1.5 mm3. Previous reconfigurable MIMO designs improved isolation using a meander line resonator, faulty ground structures, or self-isolation approaches. To attain the isolation requirements of modern devices, stub approach is introduced in proposed design. Without use of stub, simulated isolation is 15dB. The addition of a stub improved isolation even more. At six resonances, measured isolation is greater than 18 dB, the computed correlation coefficient is below 0.0065, and diversity gain is over 9.8 dB.
Go to article

Authors and Affiliations

Shivleela Mudda
1
Gayathri K M
1
Mallikarjun M
2

  1. Dayananda Sagar University, Bangalore, India
  2. Srinidhi Institute of Science and Technology, Hyderabad (Telangana), India

This page uses 'cookies'. Learn more