Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Data

Wyniki wyszukiwania

Wyników: 2
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

Investigation for heat transfer behaviour of Al 2O 3 and CuO nano-fluid in helical coil heat exchangers was carried out in this study. The thermo-physical properties of the fluids have temperature dependent nature. The main emphasis was to depict the influence of nano-particle concentration by volume on the characteristics of temperature, rate of heat transfer and heat transfer coefficients (convective). In order to enhance efficiency, density and thermal conductivity are considered to be the most important variables. In comparison towater and for equal flowrate, the rate of heat transfer of nano-fluid increases conspicuously. Efficiency of the helical coil heat exchanger increased by 38.80%.
Przejdź do artykułu

Autorzy i Afiliacje

Malik Parveez
1
Mohammad Hanief
2

  1. National Institute of Technology, Chemical Engineering Department, Srinagar, Jammu and Kashmir,190006, India
  2. National Institute of Technology, Mechacahnical Engineering Department, Srinagar, Jammu and Kashmir, 190006, India

Abstrakt

In this study, the thermal conductivity ratio model for metallic oxide based nano-fluids is proposed. The model was developed by considering the thermal conductivity as a function of particle concentration (percentage volume), temperature, particle size and thermal conductivity of the base fluid and nano-particles. The experimental results for Al2O3, CuO, ZnO, and TiO2 particles dispersed in ethylene glycol, water and a combination of both were adopted from the literature. Artificial neural network (ANN) and power law models were developed and compared with the experimental data based on statistical methods. ANOVA was used to determine the relative importance of contributing factors, which revealed that the concentration of nano-particles in a fluid is the single most important contributing factor of the conductivity ratio.
Przejdź do artykułu

Autorzy i Afiliacje

Mohammad Hanief
1
Qureshi Irfan
1
Malik Parvez
2

  1. Mechanical Engineering Department, National Institute of Technology Srinagar, India
  2. Chemical Engineering Department, National Institute of Technology Srinagar, India

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji