Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Graphene is a very promising material for potential applications in many fields. Since manufacturing technologies of graphene are still at the developing stage, low-frequency noise measurements as a tool for evaluating their quality is proposed. In this work, noise properties of polymer thick-film resistors with graphene nano-platelets as a functional phase are reported. The measurements were carried out in room temperature. 1/f noise caused by resistance fluctuations has been found to be the main component in the specimens. The parameter values describing noise intensity of the polymer thick-film specimens have been calculated and compared with the values obtained for other thick-film resistors and layers used in microelectronics. The studied polymer thick-film specimens exhibit rather poor noise properties, especially for the layers with a low content of the functional phase.

Go to article

Authors and Affiliations

Krzysztof Mleczko
Piotr Ptak
Zbigniew Zawiślak
Marcin Słoma
Małgorzata Jakubowska
Andrzej Kolek
Download PDF Download RIS Download Bibtex

Abstract

Noise pollution is a major problem nowadays. In urban context, road traffic is the main source of noise pollution. People directly exposed to road traffic noise suffer from moderate to severe annoyance, headache, stress, feeling of exhaustion, and reduced work performance efficiency. As the sources and severity of noise pollution continue to grow, new approaches are needed to reduce the exposure. In this research, noise abatement has been investigated using a computer simulation model (SoundPLAN essential 4.0). Noise maps were developed using SoundPLAN essential 4.0 software. Noise maps are very beneficial to identify the impact of noise pollution. Data required for mapping are noise data (LAeq), road inventory data, geometric features of mapping area, category wise traffic counts, category wise vehicle speed, meteorological data such as wind velocity, humidity, temperature, air pressure. LAeq observed on all locations of the Central zone of Surat city was greater than the prescribed central pollution control board (CPCB) limits during day time and night time. This paper is focused on using acoustic software for the simulation and calculation methods of controlling the traffic noise. According to the characteristics of traffic noise and the techniques of noise reduction, road traffic noise maps were developed using SoundPLAN essential 4.0 software to predict the scope of road traffic noise. On this basis, four reasonable noise control schemes were used to control noise, and the feasibility and application effect of these control schemes can be verified by using the method of simulation modelling. The simulation results show that LAeq is reduced by up to 5 dB(A). The excess noise can be efficiently reduced by using the corresponding noise reduction methods.
Go to article

Bibliography

1. Arana M.R.S., Nagore I., Pérez D. (2013), Main results of strategic noise maps and action plans in Navarre (Spain), Environmental Monitoring and Assessment, 185(6): 4951–4957, doi: 10.1007/s10661-012-2916-2.
2. Central Pollution Control Board (2000), Noise pollution regulation in India.
3. Cerdá S., Lacatis R., Gimenez A. (2013), On absorption and scattering coefficient effects in modellisation software, Acoustics Australia, 41(2): 151–155.
4. Golmohammadi R., Abbaspour M., Nassiri P., Mahjub H. (2007), Road traffic noise model, Journal of Research in Health Sciences, 7(1): 13–7, http://www.ncbi.nlm.nih.gov/pubmed/23343866.
5. Jhanwar D. (2016), Noise pollution: a review, Journal of Environment Pollution and Human Health, 4(3): 72– 77, doi: 10.12691/jephh-4-3-3.
6. Lavanya C., Dhankar R., Chhikara S. (2014), Noise Pollution: an Overview, International Journal of Current Research, 6(5): 6536–6543.
7. Manojkumar N., Basha K., Srimuruganandam B. (2019), Assessment, prediction and mapping of noise levels in Vellore City, India, Noise Mapping, 6(1): 38– 51, doi: 10.1515/noise-2019-0004
8. Oguntunde P.E., Okagbue H.I., Oguntunde O.A., Odetunmibi O.O. (2019), Public health in Ota Metropolis, Access Macedonian Journal of Medical Sciences, 7(8): 1391, doi: 10.3889/oamjms.2019.234
9. Paszkowski W., Sobiech M. (2019), The modeling of the acoustic condition of urban environment using noise annoyance assessment, Environmental Modeling and Assessment, 24(3): 319–330, doi: 10.1007/s10666-018-9643-1.
10. Prajapati P., Devani A.N. (2017), Review paper on noise reduction using different techniques, International Research Journal of Engineering and Technology (IRJET), 4(3): 522–524, https://irjet.net/archives/V4/i3/IRJET-V4I3145.pdf.
11. Sonaviya D.R., Tandel B.N. (2019a), 2-D noise maps for tier-2 city urban Indian roads, Noise Mapping, 6(1): 1–7, doi: 10.1515/noise-2019-0001.
12. Sonaviya D.R., Tandel B.N. (2019b), A review on GIS based approach for road traffic noise mapping, Indian Journal of Science and Technology, 12(14): 1–6, doi: 10.17485/ijst/2019/v12i14/132481.
13. Sonaviya D.R., Tandel B.N. (2020), Integrated road traffic noise mapping in urban Indian context, Noise Mapping, 7(1): 99–113, doi: 10.1515/noise-2020-0009.
14. Tandel B.N., Macwan J.E.M. (2017), Road traffic noise exposure and hearing impairment among traffic policemen in Surat, Western India, Journal of The Institution of Engineers (India): Series A, 98(1–2): 101–105, doi: 10.1007/s40030-017-0210-6.
15. Wolniewicz K., Zagubien A. (2015), Verifying traffic noise analysis calculation models, Polish Journal of Environmental Studies, 24(6): 2767–2772, doi: 10.15244/pjoes/58962.
Go to article

Authors and Affiliations

Dipeshkumar Ratilal Sonaviya
1
Bhaven N. Tandel
1

  1. Civil Engineering Department, SVNIT Surat, India
Download PDF Download RIS Download Bibtex

Abstract

Low-frequency noise measurements have long been recognized as a valuable tool in the examination of quality and reliability of metallic interconnections in the microelectronic industry. While characterized by very high sensitivity, low-frequency noise measurements can be extremely time-consuming, especially when tests have to be carried out over an extended temperature range and with high temperature resolution as it is required by some advanced characterization approaches recently proposed in the literature. In order to address this issue we designed a dedicated system for the characterization of the low-frequency noise produced by a metallic line vs temperature. The system combines high flexibility and automation with excellent background noise levels. Test temperatures range from ambient temperature up to 300◦C. Measurements can be completely automated with temperature changing in pre-programmed steps. A ramp temperature mode is also possible that can be used, with proper caution, to virtually obtain a continuous plot of noise parameters vs temperature.

Go to article

Authors and Affiliations

Graziella Scandurra
Sofie Beyne
Gino Giusi
Carmine Ciofi
Download PDF Download RIS Download Bibtex

Abstract

Measurement of low-frequency noise properties of modern electronic components is a very demanding challenge due to the low magnitude of a noise signal and the limit of a dissipated power. In such a case, an ac technique with a lock-in amplifier or the use of a low-noise transformer as the first stage in the signal path are common approaches. A software dual-phase virtual lock-in (VLI) technique has been developed and tested in low-frequency noise studies of electronic components. VLI means that phase-sensitive detection is processed by a software layer rather than by an expensive hardware lock-in amplifier. The VLI method has been tested in exploration of noise in polymer thick-film resistors. Analysis of the obtained noise spectra of voltage fluctuations confirmed that the 1/f noise caused by resistance fluctuations is the dominant one. The calculated value of the parameter describing the noise intensity of a resistive material, C = 1·10−21 m3, is consistent with that obtained with the use of a dc method. On the other hand, it has been observed that the spectra of (excitation independent) resistance noise contain a 1/f component whose intensity depends on the excitation frequency. The phenomenon has been explained by means of noise suppression by impedances of the measurement circuit, giving an excellent agreement with the experimental data.
Go to article

Authors and Affiliations

Adam Witold Stadler
Andrzej Kolek
Zbigniew Zawiślak
Andrzej Dziedzic
Download PDF Download RIS Download Bibtex

Abstract

This paper concerns measurements and calculations of low frequency noise for semiconductor layers with four-probe electrodes. The measurements setup for the voltage noise cross-correlation method is described. The gain calculations for local resistance noise are performed to evaluate the contribution to total noise from different areas of the layer. It was shown, through numerical calculations and noise measurements, that in four-point probe specimens, with separated current and voltage terminals, the non-resistance noise of the contact and the resistance noise of the layer can be identified. The four-point probe method is used to find the low frequency resistance noise of the GaSb layer with a different doping type. For n-type and p-type GaSb layers with low carrier concentrations, the measured noise is dominated by the non-resistance noise contributions from contacts. Low frequency resistance noise was identified in high-doped GaSb layers (both types). At room temperature, such resistance noise in an n-type GaSb layer is significantly larger than for p-type GaSb with comparable doping concentration.

Go to article

Authors and Affiliations

L. Ciura
A. Kolek
D. Smoczyński
A. Jasik
Download PDF Download RIS Download Bibtex

Abstract

The aim of the research was to determine the occurrence of possible, significant levels of infrasound and low frequency noise both in classrooms and around the primary school. Two sources of noise during research were significant: traffic on the national road and a wind farm, located near the school building. So far, few studies have been published regarding the impact of low-frequency, environmental noise from communication routes. The identification of hazards in a form of estimated noise levels resulted in preliminary information whether the location of the school near the road with significant traffic and the nearby wind farm can cause nuisance to children. There have been determined the criteria for assessing infrasound and low frequency noise. There have been made third octave band analyses of noise spectrum and the essential noise indicators were calculated. The results of learning in that school were thoroughly analysed for a long period of time and they were compared to the results obtained in other schools within a radius of 200 km situated near similar noise sources. Chosen assessment criteria show small exposure to low frequency noise. Measured infrasound noise levels are below hearing threshold.

Go to article

Authors and Affiliations

Adam Zagubień
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a low noise voltage FET amplifier for low frequency noise measurements. It was built using two stages of an op amp transimpedance amplifier. To reduce voltage noise, eight-paralleled low noise discrete JFETs were used in the first stage. The designed amplifier was then compared to commercial ones. Its measured value of voltage noise spectral density is around 24 nV/√ Hz, 3 nV/√ Hz, 0.95 nV/√Hz and 0.6 nV/√ Hz at the frequency of 0.1, 1, 10 and 100 Hz, respectively. A −3 dB frequency response is from ∼ 20 mHz to ∼ 600 kHz.

Go to article

Authors and Affiliations

Krzysztof Achtenberg
ORCID: ORCID
Janusz Mikołajczyk
ORCID: ORCID
Zbigniew Bielecki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In the contemporary world, where globalization and industrialization are progressing, there are no large cities that do not generate noise. Noise is usually connected with industrial areas, airports, circulation spaces or city centres. However, it is increasingly felt in places that have previously been associated with peace and quiet, such as suburban housing estates, recreational areas, urban forests, and parks. Noise penetrates public space, robbing this landscape of silence, pleasant sounds or positive sounds. The negative impact of noise on the life processes of humans and animals is worrying. Sound quality should be treated as an element of landscape quality, therefore it should be considered in planning processes or urban space development projects. The aim of this paper is to present an analysis of the soundscape in city space and of the level of noise in Centralny Park in Olsztyn, Poland. Guidelines were also drawn up for the proper management of park space in terms of reducing noise impact, and a model (recommendation) for analysed areas was formulated. The study consisted of:
– measurements of sound pressure levels (SPL) at selected points in two periods,
– interviews with park users and the preparation of a mental map,
– preparing a design scheme for a redesign of the park.
The results confirmed the difference between SPL in the leafless and leafy period. They also showed a clear relationship between the perception of sounds and well-being in the park.
Go to article

Authors and Affiliations

Agnieszka Jaszczak
1
ORCID: ORCID
Ewelina Pochodyła
2
ORCID: ORCID
Beata Dreksler
3
ORCID: ORCID

  1. University of Warmia and Mazury in Olsztyn Department of Landscape Architecture Bioeconomy Research Institute, Kaunas, Lithuania Vytautas Magnus University, Lithuania
  2. University of Warmia and Mazury in Olsztyn Department of Landscape Architecture
  3. American University of Beirut, Lebanon Department of Landscape Design and Ecosystem Management
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the method and results of low-frequency noise measurements of modern mid-wavelength infrared photodetectors. A type-II InAs/GaSb superlattice based detector with nBn barrier architecture is compared with a high operating temperature (HOT) heterojunction HgCdTe detector. All experiments were made in the range 1 Hz - 10 kHz at various temperatures by using a transimpedance detection system, which is examined in detail. The power spectral density of the nBn’s dark current noise includes Lorentzians with different time constants while the HgCdTe photodiode has more uniform 1/f - shaped spectra. For small bias, the low-frequency noise power spectra of both devices were found to scale linearly with bias voltage squared and were connected with the fluctuations of the leakage resistance. Leakage resistance noise defines the lower noise limit of a photodetector. Other dark current components give raise to the increase of low-frequency noise above this limit. For the same voltage biasing devices, the absolute noise power densities at 1 Hz in nBn are 1 to 2 orders of magnitude lower than in a MCT HgCdTe detector. In spite of this, low-frequency performance of the HgCdTe detector at ~ 230K is still better than that of InAs/GaSb superlattice nBn detector.

Go to article

Authors and Affiliations

Łukasz Ciura
Andrzej Kolek
Waldemar Gawron
Andrzej Kowalewski
Dariusz Stanaszek

This page uses 'cookies'. Learn more