Search results

Filters

  • Journals
  • Keywords
  • Date

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The assessment of a rock’s behaviour around excavations and the effectiveness of its reinforcement in underground ore mines is dependent on the performance of the rock-bolt and rock-mass interaction, which can be estimated on the basis of appropriately designed measurements. Based on the background of various measurements solutions described in the literature, concerning rock bolt monitoring methods, the authors proposed a new, original device for mass measurements in mine conditions. After examining the advantages and disadvantages of existing constructions, the article presents the essence, principle of operation and method of measuring anchor load in an underground excavation with the a instrument, indicator WK-2/8. The prototype has been carefully researched and successfully tested in a full-scale laboratory environment. This instrument, also referred to as a load indicator or force pad, does not require electrical power and allows for relatively accurate (with a resolution of 10-14kN, up to about 90kN loading capacity) and a remote reading of the axle loading of the anchor (AGH patent) by any person present in the specified area. The device can be installed in mining excavations under loading conditions. The relatively low cost of a measuring instrument, practically used as an additional washer, as well as an easy assembly method, makes it universally applicable in mines where anchoring is used as a means of strengthening the rock.

Go to article

Authors and Affiliations

Waldemar Korzeniowski
Krzysztof Skrzypkowski
Łukasz Herezy
Download PDF Download RIS Download Bibtex

Abstract

The research paper presents the results of the dynamic analysis of an existing bar dome subjected to wind loads. The calculation model of the structure was constructed using the finite element method. The dome was subjected to the standard wind pressure, assuming that it is operates in a harmonic manner. The numerical analyses were performed with the application of Autodesk Robot and MES3D. The analysis focused on the impact of selected factors such as the frequency of forcing, wind gustiness coefficient and structural damping on the behaviour of structures.

Go to article

Authors and Affiliations

W. Szaniec
K. Zielińska
Download PDF Download RIS Download Bibtex

Abstract

The authors studied the fracture mechanical properties under half-symmetric loading in this paper. The stress distribution around the crack tip and the stress intensity factor of three kinds of notched specimens under half symmetric loading were compared. The maximum tensile stress σmax of double notch specimens was much greater than that of single notch specimens and the maximum shear stress τmax was almost equal, which means that the single notch specimens were more prone to Mode II fractures. The intensity factors KII of central notch specimens were very small compared with other specimens and they induced Mode I fractures. For both double notch and single notch specimens, KII was kept at a constant level and did not change with the change of a/h, and KII was much larger than KI. KII has the potential to reach its fracture toughness KIIC before KI and Mode II fractures occurred. Rock-like materials were introduced to produce single notch specimens. Test results show that the crack had been initiated at the crack tip and propagated along the original notch face, and a Mode II fracture occurred. There was no relationship between the peak load and the original notch length. The average value of KIIC was about 0.602 MPa×m1/2, and KIIC was about 3.8 times KIC. The half symmetric loading test of single notch specimens was one of the most effective methods to obtain a true Mode II fracture and determine Mode fracture toughness.

Go to article

Authors and Affiliations

Zhi Wang
Jiajia Zhou
Long Li
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the capabilities of ABAQUS finite-element program [1] in modelling sandwich beams and plates resting on deformable foundations. Specific systems of sandwich beams and plates separated by an elastic core layer were subjected to the action of point and distributed moving loads. A few theoretical examples are provided to present different techniques of modelling the foundations and the moving loads. The effects of the boundary conditions and of the foundation parameters on the deflections of the analysed structures are also presented.

Go to article

Authors and Affiliations

A. Zbiciak
M. Ataman
W. Szcześniak
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study is to find the cost design of RC tension with varying conditions using the Artificial Neural Network. Design constraints were used to cover all reliable design parameters, such as limiting cross sectional dimensions and; their reinforcement ratio and even the beahviour of optimally designed sections. The design of the RC tension members were made using Indian and European standard specifications which were discussed. The designed tension members according to both codes satisfy the strength and serviceability criteria. While no literature is available on the optimal design of RC tension members, the cross-sectional dimensions of the tension membersfor different grades of concrete and steel, and area of formwork are considered as the variables in the present optimum design model. A design example is explained and the results are presented. It is concluded that the proposed optimum design model yields rational, reliable, and practical designs.

Go to article

Authors and Affiliations

N. Karthiga Shenbagam
N. Arunachalam

This page uses 'cookies'. Learn more