Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In experiments with short-pulse lasers the measurement control of the energy of the laser pulse is of crucial importance. Generally it is difficult to measure the amplitude of the pulses of short-pulse lasers using electronic devices, their response time being longer than the duration of the laser pulses. The electric response of the detector is still too fast to be directly digitized therefore a peak-hold unit can be used to allow data processing for the computer. In this paper we present a device which measures the energy of UV short (fs) pulses shot-byshot, digitizes and sends the data to the PC across an USB interface. The circuit is based on an analog peak detect and hold unit and the use of fiber optical coupling between the PC and the device provides a significant improvement to eliminate potential ground loops and to reduce conductive and radiated noise as well. The full development is open source and has been made available to download from our web page (http://www.noise.inf.u-szeged.hu/Instruments/PeakHold/).

Go to article

Authors and Affiliations

A. Barna
I.B. Földes
Z. Gingl
R. Mingesz
Download PDF Download RIS Download Bibtex

Abstract

The article describes important issues related to obtaining fundamental information used in the maritime spatial planning process. It presents practically aproached selected results of undertaken work, where the quality of spatial information may affect the decisions and final results of study works, therefore geoinformation is extremely important.

Go to article

Authors and Affiliations

Łukasz Szydłowski
Joanna Witkowska
Joanna Pardus
Download PDF Download RIS Download Bibtex

Abstract

Artificial Intelligence (AI) stands at the intersection of unprecedented opportunities and profound challenges. As AI is increasingly integrated into societal structures, the necessity for transparency and open-source approaches becomes paramount to foster both innovation and ethical considerations. Collaborative efforts among academia, industry, and policymakers are essential for addressing the multifaceted complexities that AI presents. While AI promises transformative benefits, potential challenges, such as its weaponization, corporate exploitation, and job displacement, warrant careful attention. Striking a balance between regulation with innovation is critical. Academic institutions can play a pivotal role, guiding AI’s trajectory, nurturing interdisciplinary learning, and equipping future professionals. Embracing open-source AI can ensure its ethical use and mitigate the risks associated with its exploitation. The existential threats posed by AI are significant, yet with strategic collaboration and foresight, a bright, AI-driven future is within reach.
Go to article

Authors and Affiliations

Jessica Baumberger
1

  1. AI Steering Committee, University of Illinois Springfield
Download PDF Download RIS Download Bibtex

Abstract

One of the main issues of design process of HVAC systems and ventilation ducts in particular is correct modelling of coupling of the flow field and acoustic field of the air flowing in such systems. Such a coupling can be modelled in many ways, one of them is using linearised Euler equations (LEE). In this paper, the method of solving these equations using finite element method and open source tools is decribed. Equations were transformed into functional and solved using Python language and FEniCS software. The non-reflective boundary condition called buffer layer was also implemented into equations, which allowed modelling of unbounded domains. The issue, influence of flow on wave propagation, could be adressed using LEE equations, as they take non-uniform mean flow into account. The developed tool was verified and results of simulations were compared with analytical solutions, both in one- and two-dimensional cases. The obtained numerical results are very consistent with analytical ones. Furthermore, this paper describes the use of the developed tool for analysing a more complex model. Acoustic wave propagation for the backward-facing step in the presence of flow calculated using Navier-Stokes equations was studied.

Go to article

Authors and Affiliations

Paweł Łojek
Ireneusz Czajka
Andrzej Gołaś
Download PDF Download RIS Download Bibtex

Abstract

The roof-caving step scale goaf behind the working face is sensitive to the region’s spontaneous combustion and gas concentration distribution, including many rock block cracks and holes. A severe deviation from the dynamics of fluids in porous media by representative element volume (REV), leading to the results of Computational Fluid Dynamics (CFD) simulation, has a significant error. A heterogeneous two-dimensional pore network model was established to simulate the goaf flow accurately. The network was first created using the simple cubic lattice in the OpenPNM package, and the spatial distribution of the “O-ring” bulking factor was mapped to the network. The bulking factor and Weibull distribution were combined to produce the size distribution of the pore and throat in the network. The constructed pore network model was performed with single-phase flow simulations. The study determined the pore structure parameters of the pore network through the goaf’s risked falling characteristics and described the flow field’s distribution characteristics in the goaf. The permeability coefficient increases as pore diameter, throat diameter, pore volume and throat volume increase and increases as throat length decreases. The correlation between throat volume and permeability coefficient is the highest, which indicates that the whole throat is the main control factor governing the air transport capacity in the goaf. These results may provide some guidelines for controlling thermodynamic disasters in the goaf.
Go to article

Authors and Affiliations

Ke Gao
1
ORCID: ORCID
Qiwen Li
1
ORCID: ORCID
Lianzeng Shi
1
ORCID: ORCID
Aobo Yang
1
ORCID: ORCID
Zhipeng Qi
1
ORCID: ORCID

  1. Liaoning Technical University, College of Safety Science and Engineering, Key Laboratory of Mine Thermodynamic Disasters and Control Of Ministry Of Education, China

This page uses 'cookies'. Learn more