Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Vibration is a ubiquitous phenomenon that occurs in everyday life and people are exposed to it almost all the time. Most often, vibration is measured using electromechanical devices such as piezoelectric, piezoresistive, or capacitive accelerometers. However, attention should be paid to the limitations of such vibration sensors. They cannot operate in the presence of strong electromagnetic fields. Measurements with electromechanical devices require physical contact between the sensor and the vibrating object, which is not always possible due to the design of the sensor and device. The possibility of a non-contact vibration measurement in harsh environments is provided by the technology of interferometric fibre optic sensors. This paper reports the principle of operation, design aspects, experimentation, and performance of a Mach-Zehnder interferometric setup for the measurement of vibration frequency. There are different sensing arms implemented in the interferometer: single-mode, polarization-maintaining, and tapered optical fibre. The paper emphasises the simplicity of the set-up structure and the detection capabilities based on the interferometric sensing giving the possibility of constructing a commercial vibration sensor for all industry demands.
Go to article

Authors and Affiliations

Anna T. Kurzych
1
ORCID: ORCID
Leszek R. Jaroszewicz
1
ORCID: ORCID

  1. Institute of Technical Physics, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents results of a simulation of the plasmon effect achieved between a thin precious metal layer and a biconical optical fibre taper, manufactured on a standard single mode fibre. Gold, silver and titanium were used as a metal which fulfilled a cladding function for a small diameter structure. For simulation Mode Solution software was used on which modal and frequency analyses of a wavelength were provided in the range of 800–1700 nm. A displacement of a plasmon pick in dependence of thickness of a deposited precious layer for the highest plasmon effects was observed.

Go to article

Authors and Affiliations

K.A. Stasiewicz
J.E. Moś

This page uses 'cookies'. Learn more