Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 27
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of experiments on the influence of the organic matter’s characteristics on the formation potential of water chlorination by-products – representatives of the following groups:

trihalomethanes, haloacetonitriles, haloketones, chloral hydrate and chloropicrin. The products of water fractionation (the hydrophobic and hydrophilic acids, hydrophobic and hydrophilic bases, and hydrophobic and

hydrophilic neutral fractions) were chlorinated with sodium hypochlorite. Its dose was adjusted to obtain a

residual free chlorine concentration between 3 and 5 mg/dm3

after 24 h. After this time, the water chlorination

by-products were analyzed with gas chromatography. The results’ analysis has defined the fractions, which have

the highest potential to form particular groups of volatile organic water chlorination by-products.

Go to article

Authors and Affiliations

A. Włodyka-Bergier
T. Bergier
Download PDF Download RIS Download Bibtex

Abstract

The paper presents new data on the Miocene development within the Upper Silesian Coal Basin. The Miocene succession of the study area is characterized by high thickness and highly variable lithology. In the Miocene sediments of the studied area, the presence of organic matter in the form of a coal layer, coal crumbs, and dispersed organic matter has been found. The research focused mainly on the analysis of organic matter in terms of its origin, degree of coalification, and depositional environment. The degree of coalification of organic matter was determined by the huminite/vitrinite reflectance. The hard brown coal layer with a thickness of about eight meters was identified within the Kłodnica Formation. Based on the textural properties and degree of coalification, brown coal was classified as dull brown coal and bright brown coal. Organic matter in the form of coal crumbs and dispersed organic matter were found within a package clastic sedimentary. On the basis of petrographic analysis, two types of allochthonous organic matter with different degrees of coalification were identified. The coal clasts are mainly of Carboniferous origin, while the Miocene redeposited brown coal grains dominate within the dispersed organic matter. Coal fragments and dispersed organic matter derived from the Miocene brown coal were also found within the black claystones. The study of organic matter of the Miocene sediments in the Upper Silesian Coal Basin showed both its autochthonous and allochthonous origins.
Go to article

Authors and Affiliations

Ewa Krzeszowska
1
ORCID: ORCID
Małgorzata Gonera
2

  1. Silesian University of Technology, Gliwice, Poland
  2. Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper addresses the effect of a compost prepared from tobacco wastes with an admixture of bark and straw on the enzymatic activity and certain chemical properties of a grey-brown podzolic soil amended with that compost.

The study was conducted under the conditions of a pot experiment in which the soil material was collected from the surface horizon of the grey-brown podzolic soil. The effect of the application of the compost was compared with soil without such amendment. The test plant was maize cv. Kosmo 230. Fertilisation of the light soil with the compost studied caused changes in the enzymatic activity of the soil that were related both to the dose of the compost and to the kind of enzyme studied. With increase in the dose of the compost there was an increase in dehydrogenase activity (highest dose) and a significant decrease in the activity of acid phosphatase. Moreover, it was observed that tobacco compost was a significant source that enriched the light soil in organic matter, total nitrogen, and available forms of phosphorus, magnesium and potassium, which was evident in increased yields of maize grown as the test plant.

Significant correlations were also demonstrated between a majority of the biochemical and chemical parameters, which indicates that those parameters characterise well the biological properties of a grey-brown podzolic soil amended with tobacco compost.

Go to article

Authors and Affiliations

Alicja Szwed
Justyna Bohacz
Download PDF Download RIS Download Bibtex

Abstract

The article presents research results of the introduction of powdery activated carbon to the existing technological system of the groundwater treatment stations in a laboratory, pilot plant and technical scale. The aim of the research was to reduce the content of organic compounds found in the treated water, which create toxic organic chlorine compounds (THM) after disinfection with chlorine. Nine types of powdery active carbons were tested in laboratory scale. The top two were selected for further study. Pilot plant scale research was carried out for the filter model using CWZ-30 and Norit Sa Super carbon. Reduction of the organic matter in relation to the existing content in the treated water reached about 30%. Research in technical scale using CWZ-30 carbon showed a lesser efficiency with respect to laboratory and pilot-plant scale studies. The organic matter decreased by 15%. Since filtration is the last process before the individual disinfection, an alternative solution is proposed, i.e. the second stage of filtration with a granular activated carbon bed, operating in combined sorption and biodegradation processes. The results of tests carried out in pilot scale were fully satisfactory with the effectiveness of 70–100%.

Go to article

Authors and Affiliations

Jadwiga Kaleta
Małgorzata Kida
Piotr Koszelnik
Dorota Papciak
Alicja Puszkarewicz
Barbara Tchórzewska-Cieślak
Download PDF Download RIS Download Bibtex

Abstract

Studied was a small (4.6 ha) meromictic lake situated in a deep land hollow surrounded by a highinclination slope. The lake was made shallower two times (from 20 to 18 m) by collapsed shores. It is fed by underground waters and has relatively constant outflow. Limited water dynamics reduced the epilimnion thickness (from 4 to 2 m) and influenced the monimolimnion setting below 13 m depth with a characteristic small (0.2°C) temperature increase in the vertical profile and a permanent deoxygenation of the water below 7-11 m depth. The relationship between the organic matter parameters BOD; and COD-Mn before the shore collapse revealed the dominance of matter produced in the reservoir. In the final period the situation was opposite. In the monimolimnion allochthonous matter accumulated which due to anaerobic decomposition generated large amounts of ammonium. Observed in the same water layer was also a decrease of the conductivity.
Go to article

Authors and Affiliations

Renata Tandyrak
Mariusz Teodorowicz
Joanna Gorchowska
Download PDF Download RIS Download Bibtex

Abstract

Biodegradation of organic matter by sulphate-reducing bacteria (SRB) isolated from soil from military testing ground and petroleum plants were investigated. The isolated microorganisms utilized low molecular weight compounds and participation of SRB in biodegradation of these compounds was similar in marine sediments and in soil (40-55%).
Go to article

Authors and Affiliations

Dorota Wolicka
Andrzej Borkowski
Download PDF Download RIS Download Bibtex

Abstract

Humic substances are ubiquitous materials found in terrestrial and aquatic ecosystems. Humic acids, a diagenetic product can interact with various components present in aquatic sediments. The present research is on the evaluation of sedimentary humic acids from the Krossfjorden glacial fjord situated within the Svalbard archipelago. The results of this study are needed to understand the structural characteristics of humic acids isolated from the fjord. Surface sediment samples were collected from four stations throughout the fjord during a summer period in 2018. Various spectroscopic techniques such as UV-visible, Fourier-transform infrared spectroscopy (FTIR), and Nuclear magnetic resonance spectroscopy (NMR) were applied for studying the humic acids. The elemental composition as well as the presence of tannin and lignin were also analyzed. The results of this study revealed the variation in the structure of humic acids from aliphatic to aromatic from the outer to the inner region of the fjord. This change in humic acids was well supported by the FTIR and NMR results with differences in the spectrums.
Go to article

Authors and Affiliations

Aswathy Shaji
1
ORCID: ORCID
Anu Gopinath
2
ORCID: ORCID
Anoop Krishnan
3
ORCID: ORCID
Sabu Prabhakaran
4
ORCID: ORCID

  1. School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, 682506, India
  2. Department of Aquatic Environment Management, Kerala University of Fisheries and Ocean Studies, Kochi, 682506, India
  3. Biogeochemistry Group, National Centre for Earth Science Studies, Trivandrum, 695011, India
  4. Ocean Science Group, National Centre for Polar and Ocean Research, Goa, 403804, India
Download PDF Download RIS Download Bibtex

Abstract

Abstract: Introduction and development of membrane techniques in the production of drinking water and purifi cation of wastewaters, in the last 40 years, was important stage in the field of water treatment effectiveness. Desalination of sea and brackish water by RO is an established way for drinking water production. Signifi cant improvements in design of RO, the application of alternative energy sources, modern pretreatment and new materials have caused the success of the process. NF is the method of water softening, because NF membranes can retain di- and multivalent ions, but to a limited extend monovalent. Drinking water containing viruses, bacteria and protozoa, as well as other microorganisms can be disinfected by means of UF. Viruses are retained by UF membranes, whereas bacteria and protozoa using both UF and MF membranes. For the removal of NOM it is possible to use direct NF or integrated systems combining UF or MF with coagulation, adsorption and oxidation. The use of NF, RO and ED, in the treatment of water containing micropollutants for drinking and industrial purposes, can provide more or less selective removal of the pollutants. The very important are disinfection byproducts, residue

of pharmaceuticals and endocrine disrupting compounds. For endocrine disrupting compounds, special attention is paid onto polycyclic aromatic hydrocarbons and surface-active substances, chlorinated pesticides, phthalates, alkylphenols, polychlorinated biphenyls, hormones, synthetic pharmaceuticals and other substances disposed to the environment. The application of MF and UF in the removal of inorganic and organic micropollutants is possible in integrated systems with: coagulation, adsorption, complexion with polymers or surfactants and biological reactions.

Go to article

Authors and Affiliations

Michał Bodzek
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to determine the impact of selected factors on the reduction of organic pollutants, expressed in BOD5 and CODCr, in wastewater treated in a laboratory scale model of moving bed biofilm reactor (MBBR). The factors included in the experiment: the degree of filling the fluidized bed with biomass carriers, hydraulic load, and aeration intensity. The tested model of the bioreactor consisted of five independent chambers with diameter D = 0.14 m and height H = 2.0 m, which were filled with biomass carriers at 0%, 20%, 40%, 60%, 70% of their active volume. During the test period, hydraulic loads at the level of Qh1 = 0.073 m3·m-2·h-1 and Qh2 = 0.036 m3·m-2·h-1 were applied, which ensured one-day and two-day sewage retention, respectively.The said reactors were subjected to constant aeration at P1 = 3.0 dm3·min-1 and P2 = 5.0 dm3·min-1. The highest efficiency of the reduction of the analysed indicators was demonstrated by reactors filled with carriers in the degree of 40–60%. Based on the statistical analyses (the analyses of the ANOVA variations and the Kruskal-Wallis test) carried out, it was found that the studied factors significantly modified the mutual interaction in the process of reducing BOD5 in treated wastewater of the reactors tested. The significance of the impact of the discussed factors on the values of the studied indicators in treated wastewater depends on mutual interactions between the investigated factors.

Go to article

Authors and Affiliations

Paulina Śliz
Piotr Bugajski
Karolina Kurek
Download PDF Download RIS Download Bibtex

Abstract

This study presents the spatial variability and dynamics of soil organic carbon (SOC), soil organic matter (SOM) and soil pH contents at the Wonji Shoa Sugar Estate (WSSE), Ethiopia. Soil samples were collected immediately after the sug-arcane was harvested and then analysed for SOC, SOM and pH content using standard procedures. The analysis resultsshowed that the pH value varied between 6.7–8.4 (neutral to moderately alkaline) and 7.3–8.5 (neutral to strongly alkaline) for the top and bottom soil profiles, respectively. The SOM content is in the range of 1.1–6.7% and 0.74–3.3% for the upper and lower soil layers, respectively. Nearly 45% of the samples demonstrated a SOM content below the desirable threshold (<2.1%) in the bottom layer and, hence, inadequate. Moreover, most of the topsoil layer (95%) has an SOM content exceed-ing the desirable limit and hence is categorized within the normal range. Interestingly, the SOC content showed a spatial variability in both the surface and sub-surface soil layers. A lower SOC and SOM content was found for the sub-soil in the south and southwestern part of the plantation. A further decline in the SOC and SOM content may face the estate if the cur-rent waterlogging condition continues in the future for a long period. Overall, the study result emphasizes the need to min-imize the pre-harvest burning of sugarcane and action is needed to change the irrigation method to green harvesting to fa-cilitate the SOC retention in the soil and minimize the greenhouse emission effect on the environment, hence improving soil quality in the long-term.

Go to article

Authors and Affiliations

Megersa Olumana Dinka
Meseret Dawit
Download PDF Download RIS Download Bibtex

Abstract

In the Polish sector of the Magura Nappe have long been known and exploited carbonate mineral waters, saturated

with carbon dioxide, known as the “shchava (szczawa)”. These waters occur mainly in the Krynica Subunit

of the Magura Nappe, between the Dunajec and Poprad rivers, close to the Pieniny Klippen Belt (PKB). The

origin of these waters is still not clear, this applies to both “volcanic” and “metamorphic” hypotheses. Bearing

in mind the case found in the Szczawa tectonic window and our geological and geochemical studies we suggest

that the origin of the carbon dioxide may be linked with the thermal/pressure alteration of organic matter of the

Oligocene deposits from the Grybów Unit. These deposits, exposed in several tectonic windows of the Magura

Nappe, are characterized by the presence of highly matured organic matter – the origin of the hydrocarbon accumulations.

This is supported by the present-day state of organic geochemistry studies of the Carpathian oil and

gas bed rocks. In our opinion origin of the carbon-dioxide was related to the southern, deep buried periphery of

the Carpathian Oil and Gas Province. The present day distribution of the carbonated mineral water springs has

been related to the post-orogenic uplift and erosion of the Outer (flysch) Carpathians.

Go to article

Authors and Affiliations

Nestor Oszczypko
Patrycja Wójcik-Tabol
Marta Oszczypko-Clows
Download PDF Download RIS Download Bibtex

Abstract

The adsorption of cadmium(ll) ions by low moor Alder Peat occurring in the overburden of brown coal deposits in Bełchatów Brown Coal Mine was investigated under dynamic conditions. Cadmium(ll) ions were applied to the column in aqueous solutions containing either cadmium sulfate or cadmium chloride. Solutions were also prepared containing cadmium ions alone or in combination with zinc(ll) and copper(ll) ions. The peat used as the adsorbent in this study had a high capacity for adsorbing the ions tested. The cadmium adsorbing capacity of the peat was significantly affected by pH, the anions present in the solution, and other cations present in the solution. The cadmium adsorbing capacity of the peat was significantly lower in the presence of other metal cations such as zinc(l l) and copper(l l), because these cations effectively compete with cadmium ions for binding sites on the peat. Peat can be recommended for purification processes designed to remove cadmium ions. Because cadmium ions arc predominantly loosely bound to the peat, they are easily extracted. This means that the cadmium adsorbing capacity of the peat is regenerated so that it can be used in further purification cycles.
Go to article

Authors and Affiliations

Joanna Kyzioł-Komosińska
Irena Twardowska
Aneta Kocela
Download PDF Download RIS Download Bibtex

Abstract

Straw, particularly cereal straw, is a valuable by-product of crop production, which can be used for various purposes, e.g. as livestock feed and bedding or for making fuels, however it should primarily be retained on farmland in order to prevent soil organic matter (SOM) losses and thus to maintain or improve soil quality. The aim of this study was to analyze effects of the frequency of crop residues (straw) incorporation into the soil on the content of soil organic matter and on crop yields. There were the following experimental treatments: SR – straw of all crop in the rotation removed, S1 – straw of one crop per rotation incorporated, S2 – straw of two crops in the rotation incorporated, and S3 – straw of three crops incorporated into the soil (loamy sand). After 21 years of crop rotation with straw removal (SR) the SOM level in the soil slightly decreased to 14.4 g∙kg –1 soil DM, compared to that in 1997 (14.6 g∙kg –1). However, when straw of one crop (rape) per rotation was incorporated (S1) the content of SOM increased to 15.0 g∙kg -1 soil DM, and to 15.6 and 16.0 g∙kg –1 in S2 and S3 treatments respectively. Straw retention had also a beneficial effect on the content of labile fractions of SOM (hot water extractable C and N). Grain yields and yield components of wheat and triticale, and seed yields of rape in the SR treatment were not significantly different from those obtained in S1, S2 and S3 treatments.
Go to article

Authors and Affiliations

Janusz Smagacz
1
ORCID: ORCID
Stefan Martyniuk
1
ORCID: ORCID

  1. Institute of Soil Science and Plant Cultivation – State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland
Download PDF Download RIS Download Bibtex

Abstract

The main aim of this study was to determine the morphology, physical and chemical properties of permafrost-affected soils under different types of tundra in the central part of Spitsbergen. This is a preliminary part of detailed studies focused on the relationship between tundra vegetation and permafrost-affected soils in the Spitsbergen. The obtained results indicate that all the studied soils represent an early stage of formation and the main soil-forming process present in these soils is cryoturbation. Most of the studied soils are shallow and contain a high content of coarse rock fragments. Tundra vegetation type plays controlling role in the development and structure of surface soil horizons. All the studied soils are characterized by loamy texture and acidic or slightly acidic reaction, and these properties are not very different under various tundra vegetation types. The contents of soil organic matter are strongly dependent on the type of tundra vegetation. The highest soil organic matter content occurs at sites with well-developed vegetation such as heath and wet moss tundra. The high carbon-to-nitrogen ratio for the surface soil horizons of the majority of the studied soils indicates that organic matter is poorly decomposed under all the studied tundra vegetation types. This is most likely related to low activity of soil microorganisms in the harsh High Arctic environment. However, the lowest carbon-to-nitrogen ratio was noted for surface soil horizons at sites covered with Arctic meadow, and this indicates that there occur the optimum conditions for soil organic matter decomposition.
Go to article

Authors and Affiliations

Anna Bartos
1
Wojciech Szymański
1
ORCID: ORCID
Magdalena Gus-Stolarczyk
1

  1. Institute of Geography and Spatial Management, Faculty of Geography and Geology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Straw is a valuable by-product of crop production which can be used for various purposes (livestock feed and bedding, bioenergy). However, it should primarily be retained on farmlands to prevent soil organic matter (SOM) losses. Straw retained on the field is usually incorporated into the soil when conventional (with ploughing) and reduced tillage systems are used or left on the soil surface (mulching) when a no-tillage system is practiced. The aim of this study was to determine how different straw management practices (straw removal, straw incorporation and straw mulching) affected the incidence of Cephalosporium gramineum on two winter wheat cultivars, the grain yield of these cultivars and selected soil properties based on a long-term micro-plot experiment. Cephalosporium stripe disease was absent or occurred at very low levels (0–2.4%) when straw was removed or incorporated every second year. The disease was most severe, 24–33% tillers infected, in the SM(N) treatment with yearly straw mulching and cv. Bogatka was more tolerant to C. gramineum infection than cv. Bamberka. Importantly, yearly straw incorporation into the soil in contrast to straw mulching resulted in low disease levels (5–8% tillers infected) in both cultivars. Only in the case of cv. Bamberka was the grain yield significantly reduced in the SM(N) treatment compared to other treatments. The soil in this experiment contained the lowest level of soil SOM, which amounted to 21.0 g ∙ kg –1 soil dry matter (DM), when each year wheat straw was removed (SR). Straw incorporation every second year resulted in 24.2 g of SOM ∙ kg –1 soil and the largest amounts of SOM (26.0–26.1 g ∙ kg –1 soil) were found with yearly straw incorporation into the soil. Yearly straw mulching was inferior in this respect and the soil in this treatment contained 23.8 g of SOM ∙ kg –1 soil DM.
Go to article

Authors and Affiliations

Janusz Smagacz
1
ORCID: ORCID
Stefan Martyniuk
2
ORCID: ORCID

  1. Department of Systems and Economics of Crop Production, Institute of Soil Science and Plant Cultivation State Research Institute, Puławy, Poland
  2. Department of Agricultural Microbiology, Institute of Soil Science and Plant Cultivation, State Research Institute, Puławy, Poland
Download PDF Download RIS Download Bibtex

Abstract

The study has been carried out at two experimental sites. It aims to assess the impact of the reuse of raw wastewater, purified and diluted with conventional water on the physicochemical quality of soils compared to irrigated soils with con-ventional drilled water and non-irrigated soil. The obtained results show that the electrical conductivity EC and sodium gradually increase in all the plots irrigated with wastewater. Additionally, a slight increase in the pH levels at the first site and a slight decrease in the second site was seen, but at both sites the soils remained alkaline. The infiltration rate of water slide decreases in relation to the amount of irrigation, especially in plots irrigated by raw and treated wastewater. For the same plots, the values of organic matter increased, and the values obtained for the exchangeable sodium percentage (ESP) became high in the third year and reached 17.0% and 16.7% respectively.
Go to article

Authors and Affiliations

Smail Njimat
1
ORCID: ORCID
Fouad Elfettahi
2
Hajar Griou
1
ORCID: ORCID
Mohammed Y. El Brouzi
3
Mohammed Aboulouafa
1
ORCID: ORCID
Said Ibn Ahmed
1

  1. Laboratory of Materials, Electrochemistry and Environment, University Ibn Tofail, Faculty of Sciences, Department of Chemistry, 14200, Kenitra, Morocco
  2. Agricultural Technical Institute, Ain Taoujdate, El Hajeb, Morocco
  3. Laboratory of Genetics, Neuroendocrinobiology and Biotechnology. Faculty of Sciences, Department of Biology
Download PDF Download RIS Download Bibtex

Abstract

This research presents the characteristics and inferred evolution of post-bog soils developed in the Last Glacial Maximum area of northwestern Poland near the southern Baltic coast. The study involved a total of five sites near existing lakes in NW Poland. In total, 21 soil pits were described and sampled and 17 piezometers were installed. In soil samples chemical and physical properties were determined. During the hydrological year the water level was checked and chemical properties of water were determined, the floristic composition at each location was also carried out. Mineralisation of post-bog soils initiated by dehydration leads to the decomposition of organic surface layers and an increase in CaCO3 content as well as mineral non-lime components at the expense of organic matter. A sequence of five soil types occurs in this landscape: Sapric Histosols (Limnic), Drainic Histosols (Calcaric, Limnic), Histic Gleysols (Murshic), Umbric Gleysols (Hyperhumic), Gleyic Phaeozems (Hyperhumic) that represent individual stages of soil genesis. Differences between the chemical properties of soils are apparent between organic vs organic-mineral and mineral layers. Man-induced drainage of post-bog soils changes their physical parameters. Bulk density increase and water retention decrease. The fluctuation of groundwater determines the moisture content of post-bog soils and affects the species composition of vegetation. Chemistry of groundwater is shaped mainly by the construction of catchment and the nature of its use, however, it is modified as a result of the inflow of macronutrients released during organic matter mineralisation processes and leaching of exchangeable forms from the sorption complex.
Go to article

Authors and Affiliations

Grzegorz Jarnuszewski
1
ORCID: ORCID
Edward Meller
1
ORCID: ORCID
Teodor Kitczak
1
ORCID: ORCID

  1. West Pomeranian University of Technology, Department of Environmental Management, Juliusza Słowackiego St, 17, 71-434 Szczecin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The presence of natural organic matter (NOM) in water has a significant influence on water treatment processes. Water industries around the world consider coagulation/flocculation to be one of the main water treatment methods. The chief objective of conventional coagulation-based processes is to reduce the turbidity of the water and to remove natural organic matter (NOM) present in solutions. The aim of this paper is to present some developments in terms of improved coagulation for the drinking water of Sidi Yacoub treatment plant located in the Northwest of Algeria.
The experiments involved studying the effects of the application of two coagulants (ferric chloride and aluminium sulphate) on the removal of turbidity and natural organic matter from water by measuring the chemical oxygen demand ( COD) and the UV absorbance at 254 nm. The results showed that the rate of turbidity removal increased from 81.3% to 88% when ferric chloride was applied and from 89.91% to 94% when aluminium sulphate was applied. For NOM removal, the maximum removal rates of COD and UV254 were 48% and 52%, respectively, in the case of ferric chloride. These rates increased to 59% and 65% after optimised coagulation. When aluminium sulphate was used, the rate of removal in water increased from 43% to 55% for COD and from 47% to 59% for UV254 after optimised coagulation. The combination of the two coagulants at equal dosage shows a slight improvement in the values obtained after optimisation, both in terms of turbidity and the NOM.
Go to article

Authors and Affiliations

Taieb Hadbi
1
ORCID: ORCID
Saaed Hamoudi Abdelamir
2

  1. University of Science and Technology Mohamed Boudiaf of Oran, Faculty of Architecture and Civil Engineering, El Mnaouar, BP 1505, Bir El Djir 31000, Oran, Algeria
  2. Hassiba Benbouali University of Chlef, Faculty of Civil Engineering and Architecture, Chlef, Algeria
Download PDF Download RIS Download Bibtex

Abstract

The study was carried out in the area of three dam reservoirs: Blizne and Maziarnia (Voivodeship of Podkarpackie) and Nielisz (Voivodeship of Lublin). The main parameter differentiating the reservoirs was the water retention time and the manner of water discharge from the reservoirs. Three test sites were designated in the area of each reservoir: in the river zone of the reservoir, in the central part of the reservoir, and near the reservoir dam. At these sites, the concentrations of suspended sediment in the water and the content of organic matter in it, the concentrations of total phosphorus and total nitrogen, as well as chlorophyll a were monitored. In addition, two control sites were established: on the river upstream of the reservoir and on the river downstream of the dam, respectively. At these points, the concentrations of suspended sediments in the water and their organic matter content were recorded. The obtained results of the study and multivariate analysis of the data showed that morphometric parameters (including water retention time) of reservoirs and the method of water discharge influence water quality in downstream rivers. It was found that by using lower discharge and ensuring a sufficiently long retention time of water in the reservoir, it is possible to effectively limit the negative aspects of hydrotechnical structures’ impact on the natural environment.
In practice, the observed relationships may constitute an important and missing link in the aspect of minimising undesirable side effects of this type of hydrotechnical objects.
Go to article

Authors and Affiliations

Maksymilian Cieśla
1
ORCID: ORCID
Renata Gruca-Rokosz
1
ORCID: ORCID

  1. Rzeszow University of Technology, Faculty of Civil and Environmental Engineering and Architecture, Department of Environmental and Chemistry Engineering, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

Raman spectroscopy and vitrinite reflectance measurements of dispersed organic matter from Carboniferous shales in boreholes in the northern part of the Intra-Sudetic Basin were used for thermal history reconstruction. Microscopic investigations have shown that the organic matter is dominated by the vitrinite maceral group. In analysed samples, organic matter shows a varied degree of thermal alteration determined by the mean random vitrinite reflectance (VRo) ranging from 0.72% to 3.80%. Mean apparent maximum vitrinite reflectance (R’max) values reached 4.98%. The full width at half maximum of D1 and G bands in Raman spectra are well-correlated with mean VRo and R’max. Thermal maturity in the boreholes shows a regular increase with depth. Geological data combined with Raman spectroscopy and mean vitrinite reflectance results indicate that the analysed Carboniferous strata reached maximum paleotemperatures from c. 110 to c. 265°C. The regional paleogeothermal gradient in the late Paleozoic was c. 80°C/km. The Variscan heating event presumably caused a major coalification process of organic matter. The Carboniferous–Permian magmatic activity must have contributed to high heat flow, adding to the effect of sedimentary burial on the thermal maturity.

Go to article

Authors and Affiliations

Dariusz Botor
Tomasz Toboła
Marta Waliczek
Download PDF Download RIS Download Bibtex

Abstract

In general, Antarctic marine bacteria are small, with biovolumes ranging from 0.139 to 0.204 μm-3 cell-1, but their total biomass in seawater is considerable due to relatively high numbers that approximate to 1020 cells km-3. Bacterial biomass becomes more concentrated closer to land. Our multi-year Antarctic studies demonstrated an average total bacterial biomass of 504 tons in Admirality Bay (24 km3) or 21 tons per 1 km3, versus 6.4 tons per 1 km3 in the open ocean. Strikingly, bacterial biomass reached 330 tons per 1 km3 of seawater at the sea-ice edge, as sampled in Goulden Cove in Admiralty Bay. Bacterial biomass in Admirality Bay, which we believe can be enriched by halotolerant and thermotolerant fresh water bacteria from glacial streams, is equal to or even exceeds that of the standing stock of krill (100-630 tons per bay) or other major living components, including phytoplankton (657 tons), flagellates (591 tons), and ciliates (412 tons). However, the bacterial biomass is exceeded by several orders of magnitude by non-living organic matter, which constitutes the basic bacterial carbon source. Factors regulating high bacterial abundance in the vicinity of land are discussed.

Go to article

Authors and Affiliations

Marek K. Zdanowski

This page uses 'cookies'. Learn more