Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Effect of single nucleotide polymorphism (SNP) in splicing site of the LPAR1 (lysophosphatidic acid receptor 1) gene on selected quality traits was investigated in frozen-thawed semen of Holstein-Friesian bulls. Splicing mutation A/G in the LPAR1 gene (rs43581860) was identified in 120 Holstein-Friesian bulls using PCR-RFLP technique (Hph I). Heterozygotes AG were the most frequent (37.5%) compared with AA (30.8%) and GG (31.7%) homozygotes. Observed differences in total motility (TM), sperm membrane integrity (SYBR-14/PI) and ATP content were significant between homozygotes AA or GG and heterozygotes AG. For all three traits disadvantageous effect of heterozygotes AG was detected. This means that LPAR1 splicing mutation has significant effect on semen quality and should be considered as a new marker of semen quality in Holstein-Friesian bulls.
Go to article

Authors and Affiliations

S. Kamiński
D.M. Hering
W. Kordan
M. Lecewicz
A. Sazanov
Download PDF Download RIS Download Bibtex

Abstract

Supercritical antisolvent (SAS) method is an emerging technique for particle processing of high energetic materials. The study investigates the recrystallization of high energy material HMX (octahydro- 1,3,5,7-tetranitro-1,3,5,7-tetrazocine) using SAS method. The effect of pressure, solution flow rate, supercritical antisolvent flow rate and temperature on particle size and morphology of HMX crystals has been studied with acetone as solvent and supercritical carbon dioxide as antisolvent. Stable and desirable ��- polymorphic form of HMX could be obtained under certain process conditions and has been confirmed by FTIR spectroscopy. The experimental results show that ��- polymorph of HMX is of rhombohedral morphology with mean particle size of 13.7 μm, as confirmed by SEM and particle size analyzer respectively.
Go to article

Authors and Affiliations

Anupama Thakur
1
Taniya
1
Pramod Soni
2
Mahesh Kumar
2
Seema Deshwal
2

  1. Dr SSBUICET, Panjab University, Chandigarh, 160 014, India
  2. TBRL, DRDO, Chandigarh, 160 030, India
Download PDF Download RIS Download Bibtex

Abstract

We used simple sequence repeat markers and 25 morphological characters to characterize 18 Tunisian fig (Ficus carica L.) cultivars. Morphological traits suggested a high level of variation in the germplasm. Principal component analysis (PCA) differentiated the studied cultivars. In the derived dendrogram the cultivars clustered independently of their geographical origin and sex of trees. Simple sequence repeat (SSR) markers were used to compare genetic polymorphism with the observed phenotypic variation. Using six microsatellite primers, 39 alleles and 59 genotypes were identified. The high values of polymorphism information content (PIC), ranging from 0.67 to 0.85, confirmed the effectiveness of microsatellite analysis for determining molecular polymorphism and characterizing the studied cultivars. Multilocus genotyping unambiguously distinguished all the cultivars. The ability of each type of feature to differentiate cultivars of this crop is discussed.

Go to article

Authors and Affiliations

Olfa Saddoud
Ghada Baraket
Khaled Chatti
Mokhtar Trifi
Mohamed Marrakchi
Messoud Mars
Amel Salhi-Hannachi
Download PDF Download RIS Download Bibtex

Abstract

Salt stress causes severe reduction in the growth and yield of rice plants. The ability to maintain cellular ion homeostasis is of importance to help the plant survive under salt stress. Salt overly sensitive 1 (SOS1), a plasma membrane Na+/H+ antiporter, has been proven to play critical roles in Na+ exclusion out of the cell, hence contributing to salt tolerance in plants. In this study, we analyzed the natural nucleotide polymorphisms occuring within the entire coding sequence as well as the upstream region of the OsSOS1 gene by comparing the sequences of two contrasting rice genotypes, namely, Nipponbare (salt-sensitive) and Pokkali (salt-resistant). In total, six nucleotide polymorphisms were identified in the coding sequence, and 44 nucleotide substitutions, 225-bp-insertion and 65-bp-deletion were observed in the upstream region of the OsSOS1 gene. Futher in silico analysis revealed that two out of six nucleotide polymorphisms in the coding sequence were non-synonymous (A1600G, G2204A) which led to two amino acid substitutions (T534A, S735N, respectively) positioned in the C-terminal domain of OsSOS1 transporter, but caused no effect on protein properties. In the upstream region of OsSOS1 gene, 44 single nucleotide polymorphisms and two INDELs were identified, in which nucleotide substitutions at position -1392, -1389, -822, -583, +57 and an insertion at position -1035 caused change in cis-regulatory elements. Analysis of OsSOS1 expression revealed that salt induced the expression of the gene in the roots, but not in the leaves in both investigated rice cultivars.
Go to article

Authors and Affiliations

Phuc Thi Do
Hoa Quynh Pham
Ha Manh Nguyen
Diep Hong Le
Download PDF Download RIS Download Bibtex

Abstract

A new species, Chenophila nanseni sp. n., collected from covert quills of the barnacle goose Branta leucopsis (Anseriformes: Anatidae) in Svalbard (Spitsbergen) is described and female polymorphism is recorded in this species. In syringophilids this phenomenon was known only for representatives of the genus Stibarokris. The new species differs from the similar Ch. platyrhynchos by following features: in females of Ch. nanseni the anterior margin of the propodonotal shield is flat (vs. concave in Ch. platyrhynchos) and the lengths of idiosomal setae si, f2 and ag3 in Ch. nanseni are distinctly shorter than in Ch. plathyrynchos.
Go to article

Authors and Affiliations

Maciej Skoracki
Krzysztof Zawierucha
Download PDF Download RIS Download Bibtex

Abstract

Blood samples from forty-six roe deer ( Capreolus capreolus) acquired during officially approved hunting in six hunting divisions throughout Poland were used to isolate the genomic DNA. All individuals were genotyped by MD_Bovine BeadChip (Illumina) for 46.750 Single Nucleotide Polymorphism (SNP) markers. SNPs of inappropriate clusters, with a marker call rate lower than 90% and with a minor allele frequency (MAF) lower than 0.01, located on sex chromosomes and mitochondrial DNA, were removed. Altogether, 21.033 SNP markers were included for further analysis. Observed and expected heterozygosity amounted to 0.098 and 0.119, respectively. Among 21.033 markers, a panel of 148 SNPs were selected for relationship analysis. They were unlinked and had a MAF higher than 0.2. This set of SNPs showed a probability of parentage exclusion of 1.29x10 -6 and 2.37x10 -19 for one, and two known parents, respectively. The probability of identity was estimated at 1.8x10 -40. The probabilities obtained in this study are sufficient for the monitoring and effective management of the genetic diversity of roe deer in Poland and is a cost-effective complementary tool for forensic applications.
Go to article

Bibliography

References:

Apollonio M, Andersen R, Putman R (2010) European ungulates and their management in the 21st century. Cambridge University Press, Cambridge, UK.
Bartos L, Bubenik G (2011) Relationships between rank-related behaviour, antler cycle timing and antler growth in deer behavioural aspects. Anim Prod Sci 51: 303-310.
Baruch E, Weller JI (2008) Estimation of the number of SNP genetic markers required for parentage verification. Anim Genet 39: 474-479.
Bertolini F, Elbeltagy A, Rothschild M (2017) Evaluation of the application of bovine, ovine and caprine SNP chips to dromedary genotyping. Livest Res Rural Dev 29: 31-38.
Fernández ME, Goszczynski DE, Lirón JP, Villegas-Castagnasso EE, Carino MH, Ripoli MV, Rogberg-Muñoz A, Posik DM, Peral-García P, Giovambattista G (2013) Comparison of the effectiveness of microsatellites and SNP panels for genetic identification, traceability and as-sessment of parentage in an inbred Angus herd. Genet Mol Biol 36: 185-191.
Fisher PJ, Malthus B, Walker MC, Corbett G, Spelman RJ (2009) The number of single nucleotide polymorphisms and on-farm data required for whole-herd parentage testing in dairy cattle breeds. J Dairy Sci 92: 369-374.
Glowatzki-Mullis ML, Gaillard C, Wigger G, Fries R (1995) Microsatellite-based parentage control in cattle. Anim Genet 26: 7-12.
Haynes GD, Latch EK (2012) Identification of Novel Single Nucleotide Polymorphisms (SNPs) in Deer (Odocoileus spp.) Using the Bo-vineSNP50 BeadChip. PLoS One 7: e36536.
Heaton MP, Harhay GP, Bennett GL, Stone RT, Grosse WM, Casas E, Keele JW, Smith TP, Chitko-McKown CG, Laegreid WW (2002) Selection and use of SNP markers for animal identification and paternity analysis in U.S. beef cattle. Mamm Genome 13: 272-281.
Jamieson A, Taylor SC (1997) Comparison of three proba- bility formulae for parentage exclusion. Anim Genet 28: 397-400.
Kaltenbrunner M, Hochegger R, Cichna-Markl M (2018) Sika deer (Cervus nippon)-specific real-time PCR method to detect fraudulent label-ling of meat and meat products. Sci Rep 8: 7236.
Li C, Yang F, Sheppard A (2009) Adult stem cells and mammalian epimorphic regeneration-insights from studying annual renewal of deer antlers. Curr Stem Cell Res Ther 4: 237-251.
McClure MC, McCarthy J, Flynn P, McClure JC, Dair E, O’Connell DK, Kearney JF (2018) SNP Data Quality Control in a National Beef and Dairy Cattle System and Highly Accurate SNP Based parentage verification and Identification. Front Genet. 15: 84.
Miller JM, Poissant J, Kijas JW, Coltman DW (2011) International Sheep Genomics Consortium. A genome-wide set of SNPs detects popu-lation substructure and long range linkage disequilibrium in wild sheep. Mol Ecol Resour 11: 314-322
More M, Gutiérrez G, Rothschild M, Bertolini F, Ponce de León FA (2019) Evaluation of SNP genotyping in alpacas using the Bovine HD Genotyping BeadChip. Front Genet 10: 361.
Morf NV, Kopps AM, Nater A, Lendvay B, Vasilievic N, Webster LMI, Fautley RG, Ogden R, Kratzer A (2021) STRoe deer: A validated forensic STR profiling system for the European roe deer (Capreolus capreolus). Forensic Sci Int Anim Environ 1: 100023
Pertoldi C, Wójcik JM, Tokarska M, Kawałko A, Kristensen TN, Loeschcke V, Gregersen VR, Coltman D, Wilson GA, Randi E, Henryon M, Bendixen C (2010) Genome variability in European and American bison detected using BovineSNP50 BeadChip. Conserv Genet 11: 627-634.
Plis K, Niedziałkowska M, Borowik T, Lang J, Heddergott M, Tiainen J, Bunevich A, Šprem N, Paule L, Danilkin A, Kholodova M, Zvy-chaynaya E, Kashinina N, Pokorny B, Flajšman K, Paulauskas A, Djan M, Ristić Z, Novák L, Kusza S, Miller C, Tsaparis D, Stoyanov S, Shkvyria M, Suchentrunk F, Kutal M, Lavadinović V, Šnjegota D, Krapal AM, Dănilă G, Veeroja R, Dulko E, Jędrzejewska B (2022) Pan-European phylogeography of the European roe deer (Capreolus capreolus). Ecol Evol 12: e8931.
Poetsch M, Seefeldt S, Maschke M, Ignitz E (2001) Analysis of microsatellite polymorphism in red deer, roe deer, and fallow deer – possible employment in forensic applications. Forensic Sci Int 116: 1-8.
Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10: 249-256.
Weller JI, Seroussi E, Ron M (2006) Estimation of the number of genetic markers required for individual animal identification accounting for genotyping errors. Anim Genet 37: 387-389.
Werner FA, Durstewitz G, Habermann FA, Thaller G, Krämer W, Kollers S, Buitkamp J, Georges M, Brem G, Mosner J, Fries R (2004) Detection and characterization of SNPs useful for identity control and parentage testing in major European dairy breeds. Anim Genet 35: 44-9.
Go to article

Authors and Affiliations

K. Oleński
1
D. Zalewski
2
S. Kamiński
1

  1. University of Warmia and Mazury, Department of Animal Genetics, M. Oczapowskiego 5, 10-718 Olsztyn, Poland
  2. University of Warmia and Mazury, Department of Fur-bearing Animal Breeding and Game Management, M. Oczapowskiego 5, 10-718 Olsztyn, Poland
Download PDF Download RIS Download Bibtex

Abstract

In our previous Genome-wise Association Study we found that Cystic Fibrosis Transmem- brane Conductance Regulator gene (CFTR) is a candidate gene for sperm motility in fresh semen of Holstein-Friesian bulls. Since in cows thawed semen is commonly used for the artificial insem- ination (AI) we have decided to find out whether functional polymorphism within CFTR gene coding sequence is associated with selected parameters of thawed sperm, including their motility evaluated by computer-assisted sperm analysis (CASA), the activity of three antioxidant enzymes: glutathione peroxidase (GPx) catalase (CAT), superoxide dismutase (SOD), ATP con- tent and integrity of sperm membranes. One hundred twenty Holstein Friesian bulls kept in uni- form environmental conditions (one AI company) were included in the study. Significant associ- ations between genotypes of missense mutation within exon 11 of the CFTR gene (Met468Leu) and the activity of antioxidant enzymes and sperm mitochondrial function were revealed. No effect of CFTR genotypes on sperm motility was observed. Significant differences in CAT and SOD activity were found between AA and TT homozygous individuals. Bulls with TT genotype had the lowest activity of both antioxidant enzymes. The same bulls also showed the lowest num- ber of sperm with active mitochondria. Our results demonstrate that missense mutation Met468Leu within CFTR gene is associated with antioxidant enzyme activity and mitochondrial function of bovine thawed sperm without affecting their motility.

Go to article

Authors and Affiliations

S. Kaminski
D.M. Hering
W. Kordan
M. Lecewicz
Download PDF Download RIS Download Bibtex

Abstract

Habitat fragmentation is one of serious threats to biodiversity of nature in today's world. The present study of a typical steppe species Iris pumila L. (Iridaceae) has analyzed the impacts of geographical isolation and population size on genetic diversity and population structure in conditions of habitat fragmentation. The key indices of population genetic variability calculated from the ISSR markers data were on average as follows: Shannon diversity index (S) – 0.188; unbiased Nei’s gene diversity (He) – 0.123; and the average measure of Jaccard’s genetic distances between individuals within populations – 58.4%. Although the largest population had significantly higher values of S and He, the small and marginal populations also showed a comparable level of variation. Most of the genetic variation of I. pumila was distributed within the populations. A strong correlation was found between Nei’s genetic distances and geographic distances between the populations. According to the Bayesian analysis, genetic structure of the populations was highly homogeneous; however, the presence of admixed genotypes indicated the possibility of gene flow between the populations at present.

Go to article

Authors and Affiliations

Olena Bublyk
Igor Andreev
ORCID: ORCID
Ivan Parnikoza
ORCID: ORCID
Viktor Kunakh
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Mycobacterium avium subsp. paratuberculosis (MAP) is the cause of paratuberculosis mainly in domestic and wild ruminants; paratuberculosis is also known as Johne’s disease. This disease is endemic all over the world generating significant economic losses, especially in dairy herds, although, MAP is the cause of infection in many other species including primates. Currently, MAP mycobacteria are recognized as pathogens transmitted by food. They are a potential threat to animal and human health. Infected animals excreting mycobacteria with faeces are the main source of MAP. The development of control strategies and disease control are based on determi- nation of the genetic diversity of the MAP strains causing Johne’s disease. This study describes 43 strains isolated from a herd of dairy cows located in northern Poland. The types of MAP were determinted based on the polymorphism analysis of two insertion fragments: IS900 and IS1311. The polymorphism of IS900 was analyzed with the use of a PCR multiplex according to Collins’ method and the IS1311 polymorphism with the use of the PCR-REA method. Based on the diffe- rences observed, the strains isolated were classified into two MAP types, cattle (C-type) and sheep (S-type), with the predominance of the cattle type.

Go to article

Authors and Affiliations

J. Szteyn
K. Liedtke
A. Wiszniewska-Łaszczych
B. Wysok
J. Wojtacka
Download PDF Download RIS Download Bibtex

Abstract

Function of duck (Anas platyrhynchos) major histocompatibility complex class I (Anpl-MHC I) molecules in binding peptides is through the peptide binding groove (PBG), which is thought to be influenced by the high polymorphism of α1 and α2 domains. However, little is known about the polymorphism of Anpl-MHC I peptide binding domain (PBD), especially in the domestic duck. Here, we analyzed the polymorphism of forty-eight Anpl-MHC I α1 and α2 domains from domestic duck breeds previously reported. All sequences were analyzed through multiple sequence alignment and a phylogenetic tree was constructed. The coefficient of variance of the peptide binding domains (PBDs) from WS, CV, JD, and SX duck breeds was estimated based on the Wu-Kabat variability index, followed by the location of the highly variable sites (HVSs) on reported crystal structure models. Analysis of α1 and α2 domains showed common features of classical MHC class I and high polymorphism, especially in α1 domain. The constructed phylogenetic tree showed that PBDs of domestic ducks did not segregate based on breeds and had a close phylogenetic relationship, even with wild ducks. In each breed, HVSs were mostly located in the PBG, suggesting that they might determine peptide-binding characteristics and subsequently influence peptide presentation and recognition. The combined results of sequence data and crystal structure provide novel valuable insights into the polymorphism and diversity of Anpl-MHC I PBDs that will facilitate further studies on disease resistance differences between duck breeds and the development of cytotoxic T-lymphocyte (CTL) epitope vaccines suited for preventing diseases in domestic ducks.

Go to article

Authors and Affiliations

S. Yu
J. Wu
J. Bai
Y. Ding
W. Qiu
L. Zhang
Download PDF Download RIS Download Bibtex

Abstract

In the spring of 2019, many plants, mainly winter wheat, were observed to have dwarfism and leaf yellowing symptoms. These plants from several regions of Poland were collected and sent to the Plant Disease Clinic of the Institute of Plant Protection – National Research Institute in Poznań to test for the presence of viral diseases. Double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) results showed numerous cases of Wheat dwarf virus (WDV) and a few cases of plant infections caused by Barley yellow dwarf viruses (BYDVs). WDV was detected in 163 out of 236 tested winter wheat plants (69.1%), in 10 out of 27 tested winter barley plants (37%) and in 6 out of 7 triticale plants (85.7%) while BYDVs were found, respectively, in 9.7% (23 out of 236) and in 18.5% (5 out of 27) of tested winter forms of wheat and barley plants. Infected plants came mainly from the regions of Lower Silesia and Greater Poland. Furthermore, individual cases of infections were also confirmed in the following districts: Lubusz, Opole, Silesia, Kuyavia-Pomerania and Warmia-Masuria. Results of Duplex-immunocapture-polymerase chain reaction (Duplex-IC-PCR) indicated the dominance of WDV-W form in wheat and WDV-B form in barley plants. Moreover, results of reverse transcription – polymerase chain reaction (RT-PCR) connected with restriction fragment length polymorphism (RFLP) analysis, performed for 17 BYDVs samples, revealed 8 BYDV-PAS, 4 BYDV-MAV and 2 BYDVPAV as well as the presence of two mixed infections of BYDV-MAV/-PAS and one case of BYDV-MAV/-PAV. Next, RT-PCR reactions confirmed single BYDV-GAV infection and the common presence of BYDV-SGV. To the best of our knowledge, in 2020 the viruses were not a big threat to cereal crops in Poland.

Go to article

Authors and Affiliations

Katarzyna Trzmiel
ORCID: ORCID

This page uses 'cookies'. Learn more