Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This report describes the isolation and characterization of bacterial isolates that produce anti−microbial compounds from one of the South Shetland Islands, King George Is − land, Antarctica. Of a total 2465 bacterial isolates recovered from the soil samples, six (BG5, MTC3, WEK1, WEA1, MA2 and CG21) demonstrated inhibitory effects on the growth of one or more Gram−negative or Gram−positive indicator foodborne pathogens ( i.e. Escherichia coli 0157:H7, Salmonella spp., Klebsiella pneumoniae , Enterobacter cloacae , Vibrio parahaemolyticus and Bacillus cereus ). Upon examination of their 16S rRNA sequences and biochemical profiles, the six Antarctic bacterial isolates were identified as Gram−negative Pedobacter cryoconitis (BG5), Pseudomonas migulae (WEK1), P. corrugata (WEA1) and Pseudomonas spp. (MTC3, MA2, and CG21). While inhibitors produced by strains BG5, MTC3 and CG21 were sensitive to protease treatment, those produced by strains WEK1, WEA1, and MA2 were insensitive to catalase, lipase, a −amylase, and protease enzymes. In addtion, the six Antarctic bacterial isolates appeared to be resistant to multiple antibiotics.
Go to article

Authors and Affiliations

Clemente Michael Vui Ling Wong
Heng Keat Tam
Siti Aisyah Alias
Marcelo González
Gerardo González-Rocha
Mariana Domínguez-Yévenes
Download PDF Download RIS Download Bibtex

Abstract

Species of the genus Salsola belong to the family Chenopodiaceae and are associated with large saline areas in eastern Iran. The aim of the study was to isolate and characterize the endophytic and phytopathogenic fungal communities from non-mycotrophic Salsola species. Sampling was done from different parts of Salsola plants in the Birjand region in 2017 and 2018. Isolation and identification of fungal isolates were done using biological characteristics and ITS region sequences. The pathogenicity of the representative isolates was investigated by cultivating disinfected Salsola incanescens seeds under greenhouse conditions and inoculating seedlings with a fungal spore suspension from 7 day old fungal colonies on PDA media. Based on morphological and molecular data, 27 isolates from 11 fungal species were isolated and identified from Salsola tissues. Alternaria alternata, A. chlamydospora, Aspergillus terreus, Macrophomina phaseolina, Fusarium longipes, Ulocladium atrum, and Talaromyes pinophilus caused root or stem rotting and yellowing leaf of S. incanescens under greenhouse conditions. Aspergillus niger induced S. incanescens crown swelling without any pathogenicity. Clonostachys rosea, F. redolens and F. proliferatum grew as endophytic fungi on S. incanescens roots. This is the first report of phytopathogenic M. phaseolina, F. longipes, T. pinophilus, endophytic F. redolens and A. niger as a swelling agent on S. incanescens.

Go to article

Authors and Affiliations

Mina Razghandi
Abbas Mohammadi
Morteza Ghorbani
Mohammad Reza Mirzaee
Download PDF Download RIS Download Bibtex

Abstract

In this work we summarize the current knowledge on the spatial distribution, host specificity and genetic diversity of Onchobothrium antarcticum, an endemic Antarctic cestode. We recorded it in seven fish species, elasmobranchs Amblyraja georgiana, Bathyraja eatonii, and B. maccaini and teleosts Antimora rostrata, Chionobathyscus dewitti, Dissostichus mawsoni, and Muraenolepis marmorata, caught in the Ross Sea, the D’Urville Sea, the Mawson Sea, and the Weddell Sea. The infection of A. rostrata from the part of its distribution to the south of the Falkland Islands is reported for the first time. We obtained partial 28S rDNA and cox1 sequences of plerocercoids and adults of O. antarcticum and analyzed them together with a few previously published sequences. Based on the results of the phylogenetic analysis, we cannot rule out that O. antarcticum is in fact a complex of cryptic species.
Go to article

Bibliography

BUSH A.O., LAFFERTY K.D., LOTZ J.M. and SHOSTAK A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of Parasitology 83: 575–583.

BYHOVSKAJA-PAVLOVSKAJA I.E. 1985. Parazity ryb. (Parasites of fishes.) Nauka, Leningrad (in Russian).

CAIRA J.N. and JENSEN K. 2017. Planetary biodiversity inventory (2008–2017): Tapeworms from vertebrate bowels of the earth. Natural History Museum, University of Kansas, Lawrence.

CAIRA J.N., JENSEN K., WAESCHENBACH A., OLSON P.D. and LITTLEWOOD D.T.J. 2014. Orders out of chaos – molecular phylogenetics reveals the complexity of shark and stingray tapeworm relationships. International Journal for Parasitology 44: 55–73.

CCAMLR (Commission for the Conservation of Marine Living Recourses). 2011. Scientific Observers Manual (observation guidelines and reference materials).

CCAMLR, Hobart. Tasmania. DUHAMEL G., HULLEY P.-A., CAUSSE R., KOUBBI P., VACCHI M., PRUVOST P.,VIGETTA S., IRISSON J.-O., MORMEDE S., BELCHIER M., DETTAI A., DETRICH H.W., GUTT J., JONES C.D., KOCK K.-H., LOPEZ ABELLAN L.J. and VAN DE PUTTE A. 2014. Chapter 7. Biogeographic patterns of fish. In: C. De Broyer, P. Koubbi and H.J. Griffiths, B. Raymond, C. d’ Udekem d’Acoz et al. (eds). Biogeographic Atlas of the Southern Ocean. Scientific Committee on Antarctic Research, Cambridge: 328–362.

EASTMAN J.T. 1993. Antarctic Fish Biology: Evolution in a Unique Environment. Academic Press, San Diego.

FELSENSTEIN J. 1985. Confidence limits on phylogenies: an approach using bootstrap. Evolution 39: 783–791.

FISCHER W. and HUREAU J.C. (eds). 1985. FAO Species Identification Sheets for Fishery Purposes. Southern Ocean (CCAMLR Convention Area Fishing Areas 48, 58 and 88), Vols. I and II. Prepared and published with the support of the Commission for the Conservation of Antarctic Marine Living Resources. FAO, Rome.

FROESE R. and PAULY D. 2021. FishBase. World Wide Web electronic publication. www.fishbase. org, version (02/2021).

FYLER C.A., CAIRA J.N. and JENSEN K. 2009. Five new species of Acanthobothrium (Cestoda: Tetraphyllidea) from an unusual species of Himantura (Rajiformes: Dasyatidae) from northern Australia. Folia Parasitologica 56: 107.

GAEVSKAYA A.V. and RODJUK G.N. 1988. New and rare Trematoda species from deep-sea fishes of the South-West Atlantic. Vestnik Zoologii 5: 11–15 (in Russian).

GON O. and HEEMSTRA P.C. 1990. Fishes of the Southern Ocean. J.L.B. Smith Institute of Ichthyology, Grahamstown.

GORDEEV I.I. 2015. Prevalence, geographical distribution and host specificity of parasitic copepode Lophoura szidati Stadler, 1978 (Copepoda: Sphyriidae) on grenadiers (Macrourus spp.) in the Antarctic. Invertebrate Zoology 12: 207–212.

GORDEEV I.I. and POLYAKOVA T.A. 2020. Helminths and the stomach contentment of Bathyraja sp. (Rajiformes: Arhynchobatidae) in the Simushir Island area (Pacific Ocean). Journal of Asia- Pacific Biodiversity 13: 306–309.

GORDEEV I.I. and SOKOLOV S.G. 2016. Parasites of the Antarctic toothfish Dissostichus mawsoni Norman, 1937 (Perciformes, Nototheniidae) in the Pacific sector of the Antarctic. Polar Research 35: 29364.

GORDEEV I.I. and SOKOLOV S.G. 2017. Helminths and the feeding habits of the marbled moray cod Muraenolepis marmorata Günther, 1880 (Gadiformes, Muraenolepididae) in the Ross Sea (Southern Ocean). Polar Biology 40: 1311–1318.

GORDEEV I.I., SOKOLOV S.G. and ORLOV A.M. 2017. Macroparasites of blue hake Antimora rostrata and Pacific flatnose Antimora microlepis (Gadiformes, Moridae): Current State of Exploration. Proceedings of Kazan University. Natural Sciences Series 159: 468–479 (in Russian).

GORDEEV I.I., SOKOLOV S.G., DIAZ R., MORALES X. and ORLOV A.M. 2019. Parasites of the blue hake Antimora rostrata and slender codling Halargyreus johnsonii (Gadiformes: Moridae) in the northwestern Atlantic. Acta Parasitologica 64: 489–500.

HANCHET S., DUNN A., PARKER S., HORN P., STEVENS D. and MORMEDE S. 2015.The Antarctic toothfish (Dissostichus mawsoni): biology, ecology, and life history in the Ross Sea region. Hydrobiologia 761: 397–414.

IVANOV V.A. and CAMPBELL R.A. 2002. Notomegarhynchus navonae n. gen. and n. sp. (Eucestoda: Teteraphyllidea), from skates (Rajidae: Arhynchobatinae) in the southern hemisphere. Journal of Parasitology 88: 340–349.

JENSEN K., NIKOLOV P. and CAIRA J.N. 2011. A new genus and two new species of Anteroporidae (Cestoda: Lecanicephalidea) from the darkspotted numbfish, Narcine maculata (Torpedini-formes: Narcinidae), off Malaysian Borneo. Folia Parasitologica 58: 95–107.

KLIMPEL S., KUHN T., MÜNSTER J., DÖRGE D.D., KLAPPER R. and KOCHMANN J. 2019. Parasites of marine fish and cephalopods. Springer International Publishing, New York.

KUHN T., ZIZKA V.M., MÜNSTER J., KLAPPER R., MATTIUCCI S., KOCHMANN J. and KLIMPEL S. 2018. Lighten up the dark: metazoan parasites as indicators for the ecology of Antarctic crocodile icefish (Channichthyidae) from the north-west Antarctic Peninsula. PeerJ 6: e4638.

KUMAR S., STECHER G., LI M., KNYAZ C. and TAMURA K. 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549.

LASKOWSKI Z. and ROCKA A. 2014. Molecular identification of larvae of Onchobothrium antarcticum (Cestoda: Tetraphyllidea) from marbled rockcod, Notothenia rossii, in Admiralty Bay (King George Island, Antarctica). Acta Parasitologica 59: 767–772.

LAST P., NAYLOR G., SÉRET B., WHITE W., DE CARVALHO M. and STEHMANN M. 2016. Rays of the World. CSIRO Publishing, Clayton. LAVIKAINEN A., IWAKI T., HAUKISALMI V., KONYAEV S., CASIRAGHI M., DOKUCHAEV N., GALIMBERTI A., HALAJIAN A., HENTTONEN H., ICHIKAWA-SEKI M., ITAGAKI T., KRIVOPALOV A., MERI S., MORAND S., NÄREAHO A., OLSSON G., RIBAS A., TEREFE Y. and NAKAO M. 2016. Reappraisal of Hydatigera taeniaeformis (Batsch, 1786) (Cestoda: Taeniidae) sensu lato with description of Hydatigera kamiyai n. sp. International Journal for Parasitology 46: 361–374.

MARCOGLIESE D.J. 1995. The role of zooplankton in the transmission of helminth parasites to fish. Reviews in Fish Biology and Fisheries 5: 336–371.

MISAWA R., ORLOV A.M., ORLOVA S.YU., GORDEEV I.I., ISHIHARA H., HAMATSU T., UEDA Y., FUJIWARA K., ENDO H. and KAI Y. 2020. Bathyraja (Arctoraja) sexoculata, a new softnose skate (Rajiformes: Arhynchobatidae) from Simushir Island, Kuril Islands (western North Pacific), with comments on geographical variation within Bathyraja (Arctoraja) smirnovi. Zootaxa 4861: 515–543.

MUGUE N.S., PETROV A.F., ZELENINA D.A., GORDEEV I.I. and SERGEEV A.A. 2014. Low genetic diversity and temporal stability in the Antarctic toothfish (Dissostichus mawsoni) from near- continental seas of Antarctica. CCAMLR Science 21: 1–10.

MUÑOZ G. and CARTES F.D. 2020. Endoparasitic diversity from the Southern Ocean: is it really low in Antarctic fish? Journal of Helminthology 94: E180.

OĞUZ M.C., TEPE Y., BELK M.C., HECKMANN R.A., ASLAN B., GÜRGEN M., BRAY R.A. and AKGÜL Ü. 2015. Metazoan parasites of Antarctic fishes. Türkiye Parazitoloji Derneği 39: 174–178.

PETROV A.F., SHUST K.V., PIYANOVA S.V., URYUPOVA E.F., GORDEEV I.I., SYTOV A.M. and DEMINA N.S. 2014. Guidelines for collection and processing of fishery and biological data on aquatic bioresources of the Antarctica to the Russian scientific observers in the CCAMLR area. VNIRO, Moscow (in Russian).

PETROV A.F. and GORDEEV I.I. 2015. Distribution and biological characteristics of Antarctic toothfish Dissostichus mawsoni in the Weddell Sea. Journal of Ichthyology 55: 210–216.

POLYAKOVA T.A. and GORDEEV I.I. 2020. Cestodes of Antarctic and Subantarctic fish: History and prospects of research. Marine Biological Journal 5: 79–93.

POSADA D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256. ROCKA A. 2003. Cestodes of the Antarctic fishes. Polish Polar Research 24: 261–276.

ROCKA A. 2017. Cestodes and Nematodes of Antarctic Fishes and Birds. In: S. Klimpel, T. Kuhn, H. Mehlhorn (eds) Biodiversity and Evolution of Parasitic Life in the Southern Ocean. Parasitology Research Monographs, vol 9. Springer, Cham: 77–107.

ROCKA A. and ZDZITOWIECKI K. 1998. Cestodes in fishes of the Weddell Sea. Acta Parasitologica 43: 64–70.

RONQUIST F. and HUELSENBECK J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatic 19: 1572–1574.

SCHOLZ T., CHOUDHURY A., UHROVÁ L. and BRABEC J. 2019. The Proteocephalus species- aggregate in freshwater centrarchid and percid fishes of the Nearctic region (North America). Journal of Parasitology 105: 798–812.

SMITH P.J., STEINKE D., MCVEAGH S.M., STEWART A.L., STRUTHERS C.D. and ROBERTS C.D. 2008. Molecular analysis of Southern Ocean skates (Bathyraja) reveals a new species of Antarctic skate. Journal of Fish Biology 73: 1170–1182.

SOKOLOV S.G. and GORDEEV I.I. 2013. New data on trematodes (Plathelminthes, Trematoda) of fishes in the Ross Sea (Antarctic). Invertebrate Zoology 10: 255–267.

STEHMANN M.F., WEIGMANN S. and NAYLOR G.J. 2021. First complete description of the dark- mouth skate Raja arctowskii Dollo, 1904 from Antarctic waters, assigned to the genus Bathyraja (Elasmobranchii, Rajiformes, Arhynchobatidae). Marine Biodiversity 51: 1–27.

TEREFE Y., HAILEMARIAM Z., MENKIR S., NAKAO M., LAVIKAINEN A., HAUKISALMI V., IWAKI T., OKAMOTO M. and ITO A. 2014. Phylogenetic characterisation of Taenia tapeworms in spotted hyenas and reconsideration of the “Out of Africa” hypothesis of Taenia in humans. International Journal for Parasitology 44: 533–541.

WAESCHENBACH A., WEBSTER B.L., BRAY R.A. and LITTLEWOOD D.T.J. 2007. Added resolution among ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with complete small and large subunit nuclear ribosomal RNA genes. Molecular Phylogenetics and Evolution 45: 311–325.

WAESCHENBACH A. and LITTLEWOOD D.T.J. 2017. A molecular framework for the Cestoda. In: J.N. Caira and K. Jensen (eds), Planetary Biodiversity Inventory (2008–2017): Tapeworms from the vertebrate bowels of the Earth. Natural History Museum: Lawrence: 431–451.

WOJCIECHOWSKA A. 1990a. Onchobothrium antarcticum sp. n. (Tetraphyllidea) from Bathyraja eatonii (Günther, 1876) and a plerocercoid from Notothenioidea (South Shetlands, Antarctic). Acta Parasitologica Polonica 35: 113–117.

WOJCIECHOWSKA A. 1990b. Pseudanthobothrium shetlandicum sp. n. and P. notogeorgianum sp. n. (Tetraphyllidea) from rays in the regions of the South Shetlands and South Georgia (Antarctic). Acta Parasitologica Polonica 35: 181–186.

WOJCIECHOWSKA A. 1991a. New species of the genus Phyllobothrium (Cestoda, Tetraphyllidea) from Antarctic batoid fishes. Acta Parasitologica Polonica 36: 63–68.

WOJCIECHOWSKA A. 1991b. Some tetraphyllidean and diphyllidean cestodes from Antarctic batoid fishes. Acta Parasitologica Polonica 36: 69–74.

WOJCIECHOWSKA A., PISANO E. and ZDZITOWIECKI K. 1995. Cestodes in fishes at the Heard Island (Subantarctic). Polish Polar Research 16: 205–212.

YUKHOV V.L. 1982. Antarctic toothfish. Nauka, Moscow (in Russian).

ZDZITOWIECKI K., WHITE M.G. and ROCKA A. 1997. Digenean, monogenean and cestode infection of inshore fish at the South Orkney Islands. Acta Parasitologica 42: 18–22.
Go to article

Authors and Affiliations

Ilya I. Gordeev
1 2
ORCID: ORCID
Tatyana A. Polyakova
3
ORCID: ORCID
Alexander A. Volkov
4
ORCID: ORCID

  1. Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1/12, 119234, Moscow, Russia
  2. Department of Pacific Salmons, Russian Federal Research Institute of Fisheries and Oceanography, V. Krasnoselskaya Str. 17, 107140, Moscow, Russia
  3. Moscow representative office of A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Pr. 38/3, 119991, Moscow, Russia
  4. Department of Molecular Genetics, Russian Federal Research Institute of Fisheries and Oceanography, V. Krasnoselskaya Str. 17, 107140, Moscow, Russia
Download PDF Download RIS Download Bibtex

Abstract

Cereal cyst nematodes (Heterodera spp.) are distributed globally and cause severe production losses of small grain cereals. To investigate the occurrence of cereal cyst nematodes in wheat-growing areas of Algeria, a survey was conducted and 27 cereal cyst nematode populations were collected. The populations were initially identified based on their morphological and morphometric characters, followed by molecular methods using speciesspecific primers, complemented by ITS-rDNA sequences. The morphological and morphometric features of second-stage juveniles (J2s) and cysts supported the presence of three Heterodera species: H. avenae, H. filipjevi and H. hordecalis. All morphological values of these distinct populations were very similar to those previously described for these species. Using species-specific primers for H. avenae and H. filipjevi, the specific bands of 109 bp and 646 bp confirmed the morphological identification of both species, respectively. In addition, the internal transcribed spacer (ITS) regions were sequenced to study the diversity of the 27 populations. These sequences were compared with those of Heterodera species available in the GenBank database (www.ncbi.nlm.nih.gov) and re-confirmed the identity of the species. Nineteen sequences of ITS-rDNA were similar (99–100%) to the sequences of H. avenae published in the GenBank, six sequences were similar (99–100%) to H. hordecalis, and two were similar (98–99%) to H. filipjevi. The results of this study are of great value to breeding programs and extension services, where they will contribute to the design of control measures to keep damaging nematodes in check.

Go to article

Authors and Affiliations

Djamel Smaha
Fouad Mokrini
Mustafa İmren
Aissa Mokabli
Abdelfattah A. Dababat
Download PDF Download RIS Download Bibtex

Abstract

In the predominantly polyploid and apomictic genus Hieracium (Asteraceae) sexual diploids are extremely rare and their distribution is limited mainly to the refugial areas of southern Europe. Here we characterized for the first time the chromosome complex of the relict species Hieracium bracteolatum from a diploid population on the Greek Island of Evia. The cytogenetic analysis based on classical chromosome staining, C-banding/DAPI method and fluorescence in situ hybridization with rDNA probes (rDNA-FISH) showed no major differences in the karyotype structure between this relict species and other diploids within the genus, especially in terms of chromosome morphology and rDNA location. Our study is part of the still very scarce research on the karyotype organization in sexual Hieracium taxa.
Go to article

Bibliography

ALTINORDU F, PERUZZI L, YU Y, and HE X. 2016. A tool for the analysis of chromosomes: KaryoType. Taxon 65(3): 586–592.

ASKER SE, and JERLING L. 1992. Apomixis in plants. CRC Press, Boca Raton, FL, USA.

BELYAYEV A, PAŠTOVÁ L, FEHRER J, JOSEFIOVÁ J, CHRTEK J, and MRÁZ P. 2018. Mapping of Hieracium (Asteraceae) chromosomes with genus-specific satDNA elements derived from next generation sequencing data. Plant Systematics and Evolution 304: 387 –396.

CHRTEK J, MRÁZ P, and SEVERA M. 2004. Chromosome numbers in selected species of Hieracium s.str. (Hieracium subgen. Hieracium) in the Western Car-pathians. Preslia 76: 119–139.

CHRTEK J, MRÁZ P, ZAHRADNÍCEK J, MATEO G, and SZELĄG Z. 2007. Chromosome numbers and DNA ploidy levels of selected species of Hieracium s.str. (Asteraceae). Folia Geobotanica 42: 411–430.

CHRTEK J, ZAHRADNÍČEK J, KRAK K, and FEHRER J. 2009. Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phyloge-netic groups. Annals of Botany 104: 161–178.

CHRTEK J, MRÁZ P, BELYAYEV A, PAŠTOVÁ L, MRÁZOVÁ V, CAKLOVÁ P, JOSEFIOVÁ J, ZAGORSKI D, HARTMANN M, JANDOVÁ M, PINC J, and FEHRER J. 2020. Evolutionary history and genetic diversity of apomictic allopolyploids in Hier-acium s.str.: morphological versus genomic features. American Journal of Botany 107: 66–90.

FEHRER J, KRAK K, and CHRTEK J. 2009. Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise. BMC Evolutionary Biology 9: 239. https://doi.org/10.1186/1471-2148-9-239

GERLACH WL, and DYER TA. 1980. Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Research 8: 4851–4865.

GRABOWSKA-JOACHIMIAK A, MOSIOLEK M, LECH A, and GÓRALSKI G. 2011. C-Banding/DAPI and in situ hybridization reflect karyotype structure and sex chromosome differentiation in Humulus japonicus Siebold & Zucc. Cytogenetic and Genome Research 132: 203–211.

ILNICKI T, HASTEROK R, and SZELĄG Z. 2010. Cytogenetic analysis of Hieracium transylvanicum (Asteraceae). Caryologia 63: 192–196.

LEVAN A, FREDGA K, and SANDBERG AA. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201-220.

MERXMÜLLER H. 1975. Diploide Hieracien. Anales del Instituto Botánico A. J. Cavanilles 32: 189–196.

MRÁZ P, and ZDVOŘÁK P. 2019. Reproductive pathways in Hieracium s.s.(Asteraceae): strict sexuality in diploids and apomixis in polyploids. Annals of Botany 123: 391–403.

MRÁZ P, FILIPAS L, BĂRBOS MI, KADLECOVÁ J, PAŠTOVÁ L, BELYAYEV A, and FEHRER J. 2019. An unexpected new diploid Hieracium from Europe: Integrative taxonomic approach with a phylogeny of diploid Hieracium taxa. Taxon 68: 1258-1277.

MUSIAŁ K, and SZELĄG Z. 2019. Chromosome numbers in Hieracium (Asteraceae) from Central and Southeast-ern Europe V. Acta Biologica Cracoviensia Series Botanica 61(2): 63–68.

MUSIAŁ K, VLADIMIROV V, and SZELĄG Z. 2020. Chromosome numbers in Hieracium (Asteraceae) from Central and Southeastern Europe VI. Acta Biologica Cracoviensia Series Botanica 62(2): 43–50.

OKADA T, ITO K, JOHNSON SD, OELKERS K, SUZUKI G, HOUBEN A, MUKAI Y, and KOLTUNOW AM. 2011. Chromosomes carrying meiotic avoidance loci in three apomictic eudicot Hieracium subgenus Pilosella species share structural features with two monocot apomicts. Plant Physiology 157: 1327–1341.

SCHUHWERK F, and LIPPERT W. 1998. Chromosomenzahlen von Hieracium (Compositae, Lactucaceae) Teil 2. Sendtnera 5: 269–286.

SZELĄG Z. 2010. Hieracia balcanica V. A new diploid species in Hieracium sect. Naegeliana (Asteraceae) from Macedonia. Annales Botanici Fennici 47: 315–319.

SZELĄG Z, ILNICKI T, NIKETIĆ M, and TOMOVIĆ G. 2007. Diploid chromosome numbers in five Hieracium species from Serbia and Montenegro. Acta Biologica Cracoviensia Series Botanica 49(1): 119–121.

SZELĄG Z, and ILNICKI T. 2011. Diploid chromosome numbers in Hieracium and Pilosella (Asteraceae) from Macedonia and Montenegro. Acta Biologica Cracoviensia Series Botanica 53(2): 124–126.

UNFRIED I, and GRUENDLER P. 1990. Nucleotide sequence of the 5.8S and 25S rRNA genes and of the internal transcribed spacers from Arabidopsis thaliana. Nucleic Acids Research 18(13): 4011. https://doi.org/10.1093/nar/18.13.4011

VLADIMIROV V. 2003. A new diploid Hieracium (Asteraceae: Lactuceae) from Bulgaria. Botanical Journal of the Linnean Society 143: 213–218.

VLADIMIROV V, and SZELĄG Z. 2006. A new diploid species of Hieracium sect. Pannosa (Asteraceae) from Bulgaria. Botanical Journal of the Linnean Society 150: 261– 265.

WOLNY E, and HASTEROK R. 2009. Comparative cytogenetic analysis of the genomes of the model grass Brachypodium distachyon and its close relatives. Annals of Botany 104: 873–881.
Go to article

Authors and Affiliations

Aleksandra Grabowska-Joachimiak
1
ORCID: ORCID
Magdalena Żytkowicz
1
Dagmara Kwolek
2
ORCID: ORCID
Zbigniew Szeląg
3
ORCID: ORCID

  1. Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Łobzowska 24, 31-140 Kraków, Poland
  2. Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland
  3. Pedagogical University of Cracow, Institute of Biology, Podchorążych 2, 30-084 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

Ditylenchus destructor is a serious pest of numerous economically important plants worldwide. The population of this nematode species was isolated from the root zone of Ammophila arenaria on a Baltic Sea sand dune. This population’s morphological and morphometrical characteristics corresponded to D. destructor data provided so far, except for the stylet knobs’ height (2.1–2.9 vs 1.3–1.8) and their arrangement (laterally vs slightly posteriorly sloping), the length of a hyaline part on the tail end (0.8–1.8 vs 1–2.9), the pharyngeal gland arrangement in relation to the intestine (dorsal or ventral vs dorsal, ventral or lateral) and the appearance of vulval lips (smooth vs annulated). Ribosomal DNA sequence analysis confirmed the identity of D. destructor from a coastal dune.

Go to article

Authors and Affiliations

Renata Dobosz
ORCID: ORCID
Katarzyna Rybarczyk-Mydłowska
Grażyna Winiszewska
Download PDF Download RIS Download Bibtex

Abstract

More than 4100 plant-parasitic nematodes species have been described to date, some of which are of significant economic importance since they cause losses in agriculture. This paper presents new data on three species of the genus Longidorus: L. attenuatus, L. elongatus and L. euonymus from Poland. The study was based on 1138 soil samples taken from different regions of the country. A total of 77 populations of L. elongatus, 23 of L. attenuatus and 7 of L. euonymus were found which corresponds with 6.76%, 2.02% and 0.62% of all analyzed samples, respectively. Distribution maps are presented together with data on the morphometrics, molecular markers D2-D3 28S rDNA and data on host plants on which the nematodes were found.
Go to article

Bibliography


Brown D.J.F., Boag B. 1988. An examination of methods used to extract virus vector nematodes (Nematoda: Longidoridae and Trichodoridae) from soil samples. Nematologia Mediterranea 16 (1): 93–99.
Brown E.B., Sykes G.B. 1971. Studies on the relation between density of Longidorus elongatus and growth of sugar beet, with supplementary observations on Trichodorus spp. Annals of Applied Biology 68 (3): 291–298. DOI: https://doi.org/10.1111/j.1744-7348.1971.tb04648.x
Brzeski M.W. 1968. Plant parasitic nematodes associated with cabbage in Poland. I. Systematic studies. Annales Zoologici 26: 249–279.
Courtney W.D., Polley D., Miller V.L. 1955. TAF, an improved fixative in nematode technique. Plant Disease Reptort 39: 570–571.
Donatelli M., Magarey R.D., Bregaglio S., Willocquet L., Whish J.P., Savary S. 2017. Modelling the impacts of pests and diseases on agricultural systems. Agricultural Systems 155: 213–224. DOI: https://doi.org/10.1016/j.agsy.2017.01.019
Groza M., Lazarova S., Rosca I., Peneva V. 2014. Morphology and distribution of Longidorus euonymus (Nematoda) from Romania. Scientific Papers. Series A. Agronomy 57: 407–414.
Harrison B.D. 1964. Specific nematode vectors for serologically distinctive forms of raspberry ringspot and tomato black ring viruses. Virology 22 (4): 544–550. DOI: https://doi.org/10.1016/0042-6822(64)90075-3
Harrison B.D., Mowat W.P., Taylor C.E. 1961. Transmission of a strain of tomato black ring virus by Longidorus elongatus (Nematoda). Virology 14 (4): 480–485. DOI: https://doi.org/10.1016/0042-6822(61)90341-5
Hooper D.J. 1961. A redescription of Longidorus elongatus (de Man, 1876) Thorne & Swanger, 1936 (Nematoda, Dorylaimida) and description of five new species of Longidorus from Great Britain. Nematologica 6: 237–257. DOI: https://doi.org/10.1163/187529261x00072
Hugot J. P., Baujard P., Morand S. 2001. Biodiversity in helminths and nematodes as a field of study: an overview. Nematology 3 (3): 199–208. DOI: https://doi.org/10.1163/156854101750413270
Jończyk M., Borodynko N., Pospieszny H. 2004a. Restriction analysis of genetic variability of Polish isolates of Tomato black ring virus. Acta Biochimica Polonica 51 (3): 673–681. DOI: https://doi.org/10.18388/abp.2004_3552
Jończyk M., Le Gall O., Pałucha A., Borodynko N., Pospieszny H. 2004b. Cloning and sequencing of full-length cDNAs of RNA1 and RNA2 of a Tomato black ring virus isolate from Poland. Archives of Virology 149 (4): 799–807. DOI: https://doi.org/10.1007/s00705-003-0261-z
Juroszek P., Racca P., Link S., Farhumand J., Kleinhenz B. 2020. Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. Plant Pathology 69 (2): 179–193. DOI: https://doi.org/10.1111/ppa.13119
Kornobis F. 2013. Nematodes of the subfamily Longidorinae (Nematoda: Dorylaimida) in Poland. PhD Thesis. Adam Mickiewicz University, Poznan, 205 pp. (in Polish)
Kornobis F.W., Dobosz R., Bubniewicz P., Filipiak A. 2016. First record of nematode Longidorus attenuatus on soybean in Poland. Plant Disease 100 (1): 228. DOI: https://doi.org/10.1094/PDIS-06-15-0625-PDN
Kornobis F.W., Susulovska S., Susulovsky A., Subbotin S.A. 2015. Morphological and molecular characterisation of Paralongidorus rex Andrássy, 1986 (Nematoda: Longidoridae) from Poland and Ukraine. European Journal of Plant Pathology 141 (2): 385–395. DOI: https://doi.org/10.1007/s10658-014-0550-2
Mali V.R., Hooper D.J. 1973. Observations on Longidorus euonymus n. sp. and Xiphinema vuittenezi Luc et al., 1964 (Nematoda: Dorylaimida) associated with spindle trees infected with Euonymus mosaic virus in Czechoslovakia. Nematologica 19 (4): 459–467. DOI: https://doi.org/10.1163/187529273X00457
Nunn G.B. 1992. Nematode molecular evolution: an investigation of evolutionary patterns among nematodes based upon DNA sequences. PhD Thesis, University of Nottingham, Nottingham, UK.
Oro V., Hubschen J., Karanastasi E., Krnjajić S., Krnjaić D., Brown D.J.F., Neilson R. 2005. Inter-population variability of Longidorus euonymus Mali and Hooper, 1974 (Nematoda, Dorylaimida) and comment upon the number of juvenile developmental stages. Helminthologia 42 (3): 155–165.
Palomares-Rius J.E., Escobar C., Cabrera J., Vovlas A., Castillo P. 2017. Anatomical alterations in plant tissues induced by plant-parasitic nematodes. Frontiers in Plant Science 8: 1987. DOI: https://doi.org/10.3389/fpls.2017.01987
Pathak T.B., Maskey M.L., Dahlberg J.A., Kearns F., Bali K.M. Zaccaria D. 2018. Climate change trends and impacts on California agriculture: a detailed review. Agronomy 8 (3): 25. DOI: https://doi.org/10.3390/agronomy8030025
Roca F., Lamberti F., Agnostinelli A. 1985. I Longidoridae (Nematoda, Dorylaimida) delle regioni Italine II. La Basilicata. Nematologia Mediterranea 13 (2): 161–175.
Roca F., Lamberti F., Agnostinelli A. 1987. I Longidoridae (Nematoda, Dorylaimida) delle regioni Italine V. Il Lazio. Nematologia Mediterranea 15 (1): 71–101.
Roca F., Lamberti F., Agostinelli A. 1988a. I Longidoridae (Nematoda, Dorylaimida) delle regioni Italine VII. Piemonte e la valle D’Aosta. Nematologia Mediterranea 16 (1): 35–51.
Roca F., Lamberti F., Agostinelli A. 1988b. I Longidoridae (Nematoda, Dorylaimida) delle regioni Italine VIII L’Emilia-Romagna. Nematologia Mediterrenea 16 (2): 179–188.
Roca F., Lamberti F., Agostinelli A. 1989. I Longidoridae (Nematoda, Dorylaimida) delle regioni Italine. IX. La Sicilia. Nematologia Mediterranea 17 (2): 151–165.
Roca F., Lamberti F., Elia F. 1991. I Longidoridae (Nematoda, Dorylaimida) delle regioni Italine. XI. La Campania. Nematologia Mediterranea 19 (1): 139–154.
Roca F., Lamberti F. 1993 I Longidoridae (Nematoda, Dorylaimida) delle regioni Italine. XIII. La Toscana. Nematologia Mediterranea 21 (2): 261–272.
Seinhorst J.W. 1959. A rapid method for the transfer of nematodes from fixative to anhydrous glycerine. Nematologica 4: 67–69.
Sharma R.D. 1965. Direct damage to strawberry by Longidorus elongatus (de Man, 1876) Thorne and Swanger, 1936. Mededelingen van de Landbouwhogeschool te Gent 30: 1437–1443.
Singh S.K., Hodda M., Ash G.J. 2013. Plant‐parasitic nematodes of potential phytosanitary importance, their main hosts and reported yield losses. Eppo Bulletin 43 (2): 334–374. DOI: https://doi.org/10.1111/epp.12050
Singh S., Singh B., Singh A.P. 2015. Nematodes: A threat to sustainability of agriculture. Procedia Environmental Sciences 29: 215–216. DOI: https://doi.org/10.1016/j.proenv.2015.07.270
Szczygieł A. 1974. Plant parasitic nematodes associated with strawberry plantations in Poland. Zeszyty Problemowe Postępów Nauk Rolniczych 154: 9–132.
Szczygieł A., Brzeski M.W. 1985. Atlas of Plant Parasitic Nematodes of Poland. Distribution of Longidoridae, Xiphinemidae and Trichodoridae. European Plant Parasitic Nematode Survey, 32 pp.
Taylor G.E. 1962. Transmission of raspberry ringspot virus by Longidorus elongatus (de Man) (Nematoda: Dorylaimidae). Virology 17 (3): 493–494. DOI: https://doi.org/10.1016/0042-6822(62)90145-9
Taylor C.E., Brown D.J.F. 1997. Nematode Vectors of Plant Viruses. CAB Interntional, Wallingford, USA, 296 pp.
Whitehead A.G., Hooper D.J. 1970. Needle nematodes (Longidorus spp.) and stubby‐root nematodes (Trichodorus spp.) harmful to sugar beet and other field crops in England. Annals of Applied Biology 65: 339–350. DOI: https://doi.org/10.1111/j.1744-7348.1970.tb05502.x
Winiszewska G., Dmowska E., Chałańska A., Dobosz R., Kornobis F., Ilieva‐Makulec K., Skwiercz A., Wolny S., Ishaqe E. 2012. Nematodes associated with plant growth inhibition in the Wielkopolska region. Journal of Plant Protection Research 52 (4): 440– 446. DOI: https://doi.org/10.2478/v10045-012-0071-y
Witkowska T. 1958. Obserwacje nad fauną i ekologią nicieni w różnych uprawach rolniczych. Zeszyty Naukowe Uniwersytetu Mikołaja Kopernika w Toruniu. Nauki Matematyczno- Przyrodnicze 3: 103–123.
Go to article

Authors and Affiliations

Franciszek Kornobis
1
ORCID: ORCID

  1. Department of Entomology and Animal Pests, Institute of Plant Protection – National Research Institute, Poznań, Poland

This page uses 'cookies'. Learn more