Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents research on the capability of the residual magnetic field (RMF) measurement system to be applied to the railway inspection for the early non-destructive detection of defects. The metal magnetic memory (MMM) phenomena are analysed using normal component Hy of self-magnetic flux leakage (SMFL), and its tangential component Hx, as well as their respective gradients. The measurement apparatus is described together with possible factors that may affect the results of measurement. The Type A uncertainty estimation and repeatability tests were performed. The results demonstrate that the system may be successfully applied to detection of head check flaws.

Go to article

Authors and Affiliations

Mirosław Rucki
ORCID: ORCID
Anna Gockiewicz
Tadeusz Szumiata
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the implementation of the method of own residual magnetic field to identify damages occurring in a steel rope. A special measuring head with 4 residual magnetic field sensors, spaced evenly every 90 degrees, was used. The measuring head was also equipped with a path or a time sensor. The measurement consists in recording normal and tangential components of the residual magnetic field and their gradients. This method has a number of advantages with regard to classic magnetic methods. It does not require special magnetisation of the rope or its special preparation for testing. Validation of the obtained test results of this rope was conducted by the classic MTR method and a very good compliance in the detection of damage was demonstrated. It was found that the strong magnetisation used in the MTR method does not affect the detection of damage to the rope using the residual magnetic field method.

Go to article

Authors and Affiliations

Janusz Juraszek

This page uses 'cookies'. Learn more