Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A sediment trap with bamboo materials can be utilized as one alternative of eco-friendly technology to reduce the ero-sion that occurred on agricultural land. This study aims to determine the most efficient form of that sediment trap in the field. Location study is in the Tulungrejo Village, Batu, Indonesia, which has andosol soil type and 35 cases of a landslide in 2013. Three forms of sediment traps were used (square, trapezoidal, and stratified type) with the purpose to find the most effective form. It is obtained that the most effective sediment trap is a stratified form with the 31.91% effectiveness or able to withstand sediment of 25.02 kg, while the adequate number is two pieces with the ability to withstand the most consider-able sediment of (91.70%). Therefore this stratified form of sediment traps is effective in erosion prevention on agriculturalland in the study area. For further development, it is required to test out the variations of the contents in a broader area with a more varied level of the slope.

Go to article

Authors and Affiliations

Riyanto Haribowo
Ussy Andawayanti
Rahmah Dara Lufira
Download PDF Download RIS Download Bibtex

Abstract

Several conclusions and recommendations concerning sediment trap geometry, the technique of their deployment and interpretation of measurements results are described in this paper. Only cylindrical sediment traps are able to cope with the diverse and dynamic environment of glaciated fjords. The relation between different trap parameters shows the optimal proportion of cylinder diameter as being between 6 and 10 cm and ratio length/diameter not less than 7/1. During the peak of the melting season in Kongsfjorden (Spitsbergen) the rate of sedimentation of total matter reaches over 900 g m–2 d–1 and the velocity of brackish water current can reach 80 cm s–1 on the surface. Owing to the high productivity of Arctic fiords and large concentration of suspended mineral matter it is possible to collect of large samples in a short time, therefore prevention of sediment traps by swimmers is not necessary.

Go to article

Authors and Affiliations

Marek Zajączkowski
Download PDF Download RIS Download Bibtex

Abstract

The objectives of developing oil palm plantations should feasible economically and without causing massive erosion. This research proposes soil and water conservation strategies that are ideal and optimal for oil palm cultivation depending on land capability class. The conservation test for plants was performed according to land capability classes on a plot measuring 22 m × 4 m. Runoff and erosion rates were measured using Multislot Divisor Method. Nutrient leaching was analysed based on the content of C-organic (Ctot) (Walkley–Black method), total nitrogen (Ntot) (Kjeldahl method), P-available (Bray-1 method) and K2O (extraction with 1N NH4OAc at pH 7.0). From the results, land capability class III, cover crops (soybean) + manure (P3) treatment effectively reduced runoff and soil erosion (22.63 m3∙ha–1∙y–1 and 13.04 Mg∙ha–1∙y–1), as well as nutrient leaching, compared to other treatments. Furthermore, sediment trap + cover crop + manure (P3) controlled runoff, erosion and nutrient leaching on land capability class IV, producing the lowest runoff (129.40 m3∙ha–1∙y–1), soil erosion (11.39 Mg∙ha–1∙y–1), C-organic (1.3%), and P (1.95 mg kg–1). Soil conservation treatment significantly reduced erosion and runoff (p < 0.05) on land capability class VI. The bench terrace + cover plants + manure treatment-controlled runoff, erosion, and soil nutrient leaching.
Go to article

Authors and Affiliations

Halus Satriawan
1
ORCID: ORCID
Zahrul Fuady
1
ORCID: ORCID
Rini Fitri
2
ORCID: ORCID

  1. Almuslim University, Faculty of Agriculture, Department of Agrotechnology, Bireuen, Aceh, 24261, Indonesia
  2. University of Trisakti, Faculty of Landscape Architecture and Environmental Technology, Department of Landscape Architecture, Jakarta, Indonesia

This page uses 'cookies'. Learn more